Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import PSeries_reg.
Local Open Scope nat_scope.
Local Open Scope R_scope.


(**********)

continuity sin

continuity sin
x:R

continuity_pt sin x
x:R
H0:continuity_pt cos (PI / 2 - x)

continuity_pt sin x
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond (PI / 2 - x) x0 /\ Rabs (x0 - (PI / 2 - x)) < alp -> Rabs (cos x0 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sin x0 - sin x) < eps)
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)

exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < alp -> Rabs (sin x1 - sin x) < eps)
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)

x0 > 0 /\ (forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (sin x1 - sin x) < eps)
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps

x0 > 0 /\ (forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (sin x1 - sin x) < eps)
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps

x0 > 0
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps
forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (sin x1 - sin x) < eps
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps

forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (sin x1 - sin x) < eps
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps
x1:R
H4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0

D_x no_cond (PI / 2 - x) (PI / 2 - x1) /\ Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps
x1:R
H4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H5:D_x no_cond x x1
H6:Rabs (x1 - x) < x0

D_x no_cond (PI / 2 - x) (PI / 2 - x1) /\ Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps
x1:R
H4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H5:D_x no_cond x x1
H6:Rabs (x1 - x) < x0

D_x no_cond (PI / 2 - x) (PI / 2 - x1)
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps
x1:R
H4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H5:D_x no_cond x x1
H6:Rabs (x1 - x) < x0
Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps
x1:R
H4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H5:D_x no_cond x x1
H6:Rabs (x1 - x) < x0

True
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps
x1:R
H4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H5:D_x no_cond x x1
H6:Rabs (x1 - x) < x0
PI / 2 - x <> PI / 2 - x1
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps
x1:R
H4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H5:D_x no_cond x x1
H6:Rabs (x1 - x) < x0
Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps
x1:R
H4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H5:D_x no_cond x x1
H6:Rabs (x1 - x) < x0

PI / 2 - x <> PI / 2 - x1
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps
x1:R
H4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H5:D_x no_cond x x1
H6:Rabs (x1 - x) < x0
Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0
x:R
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)
eps:R
H:eps > 0
x0:R
H1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)
H2:x0 > 0
H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps
x1:R
H4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H5:D_x no_cond x x1
H6:Rabs (x1 - x) < x0

Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0
replace (PI / 2 - x1 - (PI / 2 - x)) with (x - x1); [ idtac | ring ]; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply H6. Qed.

forall fn : nat -> R -> R, fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)) -> CVN_R fn

forall fn : nat -> R -> R, fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)) -> CVN_R fn
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal

{An : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n))}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l} -> {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n))}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) x

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n))}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) x

Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) x /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) x

Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) x
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) x
forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) x

forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y

Rabs (/ INR (fact (2 * n + 1))) * Rabs (y ^ (2 * n)) <= / INR (fact (2 * n + 1)) * r ^ (2 * n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y

0 < / INR (fact (2 * n + 1)) -> Rabs (/ INR (fact (2 * n + 1))) * Rabs (y ^ (2 * n)) <= / INR (fact (2 * n + 1)) * r ^ (2 * n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y
0 < / INR (fact (2 * n + 1))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y
H1:0 < / INR (fact (2 * n + 1))

/ INR (fact (2 * n + 1)) * Rabs (y ^ (2 * n)) <= / INR (fact (2 * n + 1)) * r ^ (2 * n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y
0 < / INR (fact (2 * n + 1))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y
H1:0 < / INR (fact (2 * n + 1))

0 <= / INR (fact (2 * n + 1))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y
H1:0 < / INR (fact (2 * n + 1))
Rabs (y ^ (2 * n)) <= r ^ (2 * n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y
0 < / INR (fact (2 * n + 1))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y
H1:0 < / INR (fact (2 * n + 1))

Rabs (y ^ (2 * n)) <= r ^ (2 * n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y
0 < / INR (fact (2 * n + 1))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y
H1:0 < / INR (fact (2 * n + 1))

Rabs (Rabs y) <= r
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y
0 < / INR (fact (2 * n + 1))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) x
n:nat
y:R
H0:Boule 0 r y

0 < / INR (fact (2 * n + 1))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal

(r : R) <> 0 -> {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0

forall n : nat, Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
n:nat

/ INR (fact (2 * n + 1)) * r ^ (2 * n) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
n:nat

/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
n:nat
r ^ (2 * n) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
n:nat

r ^ (2 * n) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0

Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:Un_cv (fun n : nat => Rabs (sin_n (S n) / sin_n n)) 0

Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0 < eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0

0 < eps / r² -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0 < eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n : nat, (n >= N0)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0 < eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat

R_dist (Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0 < eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n))) - 0) < eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

0 < / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ r² * Rabs (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < / r² * eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

/ r² * Rabs (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < / r² * eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (/ r²) * Rabs (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < / r² * eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ r² >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (/ r² * (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0)) < / r² * eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ r² >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (/ r² * (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) - / r² * 0) < / r² * eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ r² >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (1 * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < / r² * eps
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ r² >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < eps * / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ r² >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r² <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ r² >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

/ r² >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

1 * Rabs (/ INR (fact (2 * S n + 1))) * Rabs (/ ((-1) ^ n * / INR (fact (2 * n + 1)))) * r² = Rabs (/ INR (fact (2 * S n + 1))) * Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (/ INR (fact (2 * S n + 1))) * Rabs (/ ((-1) ^ n * / INR (fact (2 * n + 1)))) * r² = Rabs (/ INR (fact (2 * S n + 1))) * Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (/ ((-1) ^ n * / INR (fact (2 * n + 1)))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (/ (-1) ^ n * / / INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (/ (-1) ^ n * INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (/ (-1) ^ n) * Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

/ Rabs ((-1) ^ n) * Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ Rabs (/ INR (fact (2 * n + 1))) * / Rabs (r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (Rabs (/ / INR (fact (2 * n + 1))) * / Rabs (r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (Rabs (INR (fact (2 * n + 1))) * / Rabs (r ^ (2 * n)))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * (Rabs (Rabs (INR (fact (2 * n + 1)))) * Rabs (/ Rabs (r ^ (2 * n))))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (INR (fact (2 * n + 1))) * r² = Rabs (r ^ (2 * S n)) * (Rabs (INR (fact (2 * n + 1))) * Rabs (/ Rabs (r ^ (2 * n))))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (INR (fact (2 * n + 1))) * r² = Rabs (INR (fact (2 * n + 1))) * Rabs (/ Rabs (r ^ (2 * n))) * Rabs (r ^ (2 * S n))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r² = Rabs (/ Rabs (r ^ (2 * n))) * Rabs (r ^ (2 * S n))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r² = / Rabs (Rabs (r ^ (2 * n))) * Rabs (r ^ (2 * S n))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r² = / Rabs (r ^ (2 * n)) * Rabs (r ^ (2 * S n))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r² = / r ^ (2 * n) * r ^ (2 * S n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * S n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r² = / r ^ (2 * n) * (r ^ (2 * n) * r * r)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) * r * r = r ^ (2 * S n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * S n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r² = / r ^ (2 * n) * r ^ (2 * n) * r * r
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) * r * r = r ^ (2 * S n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * S n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r² = 1 * r * r
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) * r * r = r ^ (2 * S n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * S n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r ^ (2 * n) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) * r * r = r ^ (2 * S n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * S n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r ^ (2 * n) * r * r = r ^ (2 * S n)
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * S n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r ^ (2 * n) * r * r = r ^ S (S (2 * n))
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
S (S (2 * n)) = (2 * S n)%nat
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * S n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

S (S (2 * n)) = (2 * S n)%nat
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * S n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r ^ (2 * S n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
r ^ (2 * n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

r ^ (2 * n) >= 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (/ INR (fact (2 * n + 1))) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

Rabs (r ^ (2 * n)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

(-1) ^ n <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²
/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0
eps:R
H2:eps > 0
H3:0 < eps / r²
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²
n:nat
H5:(n >= N0)%nat
H6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²

/ INR (fact (2 * n + 1)) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0
0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
H0:(r : R) <> 0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0
eps:R
H2:eps > 0

0 < eps / r²
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal
(r : R) <> 0
fn:nat -> R -> R
H:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))
r:posreal

(r : R) <> 0
assert (H0 := cond_pos r); red; intro; rewrite H1 in H0; elim (Rlt_irrefl _ H0). Qed.
(sin h)/h -> 1 when h -> 0

derivable_pt_lim sin 0 1

derivable_pt_lim sin 0 1
eps:R
H:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R

CVN_R fn -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn

(forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal

CVN_r fn r -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r

(forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y

Boule 0 r 0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:continuity_pt (SFL fn cv) 0

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps

forall h : R, h <> 0 -> Rabs h < {| pos := alp; cond_pos := H4 |} -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp

Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp

Rabs (sin h / h + - (1)) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp

Rabs (SFL fn cv h - SFL fn cv 0) < eps -> Rabs (sin h / h + - (1)) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps

SFL fn cv 0 = 1 -> Rabs (sin h / h + - (1)) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1

SFL fn cv h = sin h / h -> Rabs (sin h / h + - (1)) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
SFL fn cv h = sin h / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (sin h / h - 1) < eps
H9:SFL fn cv 0 = 1
H10:SFL fn cv h = sin h / h

Rabs (sin h / h + - (1)) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
SFL fn cv h = sin h / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1

SFL fn cv h = sin h / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1

(let (a, _) := cv h in a) = (let (a, _) := exist_sin h² in h * a) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x

x = (let (a, _) := exist_sin h² in h * a) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:sin_in h² x0

x = h * x0 / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:sin_in h² x0

x = x0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:sin_in h² x0

Un_cv ?Un x
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:sin_in h² x0
Un_cv ?Un x0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:sin_in h² x0

Un_cv (fun N : nat => SP fn N h) x0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n) x0 < eps1
eps0:R
H10:eps0 > 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n) x0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n) x0 < eps1
eps0:R
H10:eps0 > 0
N0:nat
H11:forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n) x0 < eps0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n) x0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps1
eps0:R
H10:eps0 > 0
N0:nat
H11:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps0
n:nat
H12:(n >= N0)%nat

R_dist (sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n) x0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps1
eps0:R
H10:eps0 > 0
N0:nat
H11:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0 - x0) < eps0
n:nat
H12:(n >= N0)%nat

Rabs (sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n - x0) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps1
eps0:R
H10:eps0 > 0
N0:nat
H11:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0 - x0) < eps0
n:nat
H12:(n >= N0)%nat

Rabs (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n - x0) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps1
eps0:R
H10:eps0 > 0
N0:nat
H11:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0 - x0) < eps0
n:nat
H12:(n >= N0)%nat
sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n = sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
H9:SFL fn cv 0 = 1
x:R
HUn:Un_cv (fun N : nat => SP fn N h) x
x0:R
Hsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps1
eps0:R
H10:eps0 > 0
N0:nat
H11:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0 - x0) < eps0
n:nat
H12:(n >= N0)%nat

sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n = sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps

SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps

(let (a, _) := cv 0 in a) = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x

x = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x

Un_cv ?Un x
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
Un_cv ?Un 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x

Un_cv (fun N : nat => SP fn N 0) 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat

R_dist (sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k)) n) 1 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat

Rabs (1 - 1) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat
1 = sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k)) n
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat

1 = sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k)) n
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat

1 = (-1) ^ 0 / INR (fact (2 * 0 + 1)) * 0 ^ (2 * 0) + sum_f_R0 (fun i : nat => (-1) ^ S i / INR (fact (2 * S i + 1)) * 0 ^ (2 * S i)) (Init.Nat.pred n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat

0 = sum_f_R0 (fun i : nat => -1 * (-1) ^ i * / INR (fact (i + S (i + 0) + 1) + (i + S (i + 0) + 1) * fact (i + S (i + 0) + 1)) * (0 * 0 ^ (i + S (i + 0)))) (Init.Nat.pred n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n1 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n1) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat
n0:nat
H11:(n0 <= Init.Nat.pred n)%nat

-1 * (-1) ^ n0 * / INR (fact (n0 + S (n0 + 0) + 1) + (n0 + S (n0 + 0) + 1) * fact (n0 + S (n0 + 0) + 1)) * (0 * 0 ^ (n0 + S (n0 + 0))) = 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) y
H1:Boule 0 r 0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
H8:Rabs (SFL fn cv h - SFL fn cv 0) < eps
x:R
HUn:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H9:eps0 > 0
n:nat
H10:(n >= 1)%nat

(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp

Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp

D_x no_cond 0 h /\ Rabs (h - 0) < alp
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp

D_x no_cond 0 h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (h - 0) < alp
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp

True
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
0 <> h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (h - 0) < alp
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp

0 <> h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp
Rabs (h - 0) < alp
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
H1:Boule 0 r 0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < alp

Rabs (h - 0) < alp
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
H0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y

Boule 0 r 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r

forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
n:nat
y:R
H0:Boule 0 r y

continuity_pt (fct_cte ((-1) ^ n / INR (fact (2 * n + 1))) * pow_fct (2 * n)) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
n:nat
y:R
H0:Boule 0 r y

continuity_pt (fct_cte ((-1) ^ n / INR (fact (2 * n + 1)))) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
n:nat
y:R
H0:Boule 0 r y
continuity_pt (pow_fct (2 * n)) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
n:nat
y:R
H0:Boule 0 r y

derivable_pt (fct_cte ((-1) ^ n / INR (fact (2 * n + 1)))) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
n:nat
y:R
H0:Boule 0 r y
continuity_pt (pow_fct (2 * n)) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
n:nat
y:R
H0:Boule 0 r y

continuity_pt (pow_fct (2 * n)) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
X0:CVN_r fn r
n:nat
y:R
H0:Boule 0 r y

derivable_pt (pow_fct (2 * n)) y
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal
CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:={| pos := 1; cond_pos := Rlt_0_1 |}:posreal

CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
X:CVN_R fn

forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> R

CVN_R fn
apply CVN_R_sin; unfold fn; reflexivity. Qed.
((cos h)-1)/h -> 0 when h -> 0

derivable_pt_lim cos 0 0

derivable_pt_lim cos 0 0
eps:R
H:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:derivable_pt_lim sin 0 1

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0

0 < eps / 2 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2

continuity_pt sin 0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)

0 < Rmin del del_c -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs ((cos (0 + h) - cos 0) / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (-2 * (sin (h / 2))² / h - 0) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (-2 * (sin (h / 2))² / h) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (- (2) * (sin (h / 2))² / h) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (- (2 * (sin (h * / 2))² * / h)) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (2 * (sin (h * / 2))² * / h) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2)) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2)) <= Rabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) + Rabs (sin (h / 2))
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) + Rabs (sin (h / 2)) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) + Rabs (sin (h / 2)) < eps
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) <= Rabs (sin (h / 2) / (h / 2) - 1)
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

0 <= Rabs (sin (h / 2) / (h / 2) - 1)
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) <= 1
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (sin (h / 2)) <= 1
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:-1 <= sin (h / 2) <= 1

Rabs (sin (h / 2)) <= 1
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:-1 <= sin (h / 2) <= 1
r:sin (h / 2) < 0

- sin (h / 2) <= 1
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:-1 <= sin (h / 2) <= 1
r:sin (h / 2) >= 0
sin (h / 2) <= 1
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:-1 <= sin (h / 2) <= 1
r:sin (h / 2) < 0

- sin (h / 2) <= - - (1)
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:-1 <= sin (h / 2) <= 1
r:sin (h / 2) >= 0
sin (h / 2) <= 1
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:-1 <= sin (h / 2) <= 1
r:sin (h / 2) < 0

- (1) <= sin (h / 2)
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:-1 <= sin (h / 2) <= 1
r:sin (h / 2) >= 0
sin (h / 2) <= 1
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:-1 <= sin (h / 2) <= 1
r:sin (h / 2) >= 0

sin (h / 2) <= 1
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (h / 2) < del -> Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (h / 2) < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:Rabs (h / 2) < del

h / 2 <> 0 -> Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:Rabs (h / 2) < del
h / 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (h / 2) < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:Rabs (h / 2) < del
H10:h / 2 <> 0
H11:Rabs ((sin (0 + h / 2) - sin 0) / (h / 2) - 1) < eps / 2

Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:Rabs (h / 2) < del
h / 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (h / 2) < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:Rabs (h / 2) < del
H10:h / 2 <> 0
H11:Rabs ((sin (h / 2) - 0) / (h / 2) - 1) < eps / 2

Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:Rabs (h / 2) < del
h / 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (h / 2) < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:Rabs (h / 2) < del

h / 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (h / 2) < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:Rabs (h / 2) < del

h <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:Rabs (h / 2) < del
/ 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (h / 2) < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:Rabs (h / 2) < del

/ 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (h / 2) < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (h / 2) < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (h / 2) < del / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
del / 2 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs h * Rabs (/ 2) < del * / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
del / 2 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs h * / 2 < del * / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
del / 2 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

0 < / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs h < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
del / 2 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs h < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
del / 2 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs h < delta
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
delta <= del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
del / 2 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

delta <= del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
del / 2 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
del / 2 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

del / 2 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

0 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
0 < / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

0 < / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2 - 0) < del_c -> Rabs (sin (h / 2) - sin 0) < eps / 2

Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

Rabs (sin (h / 2)) < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

D_x no_cond 0 (h / 2)
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
Rabs (h / 2) < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

True
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
0 <> h / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
Rabs (h / 2) < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

0 <> h / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
Rabs (h / 2) < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

h <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
/ 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
Rabs (h / 2) < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

/ 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
Rabs (h / 2) < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

Rabs (h / 2) < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

Rabs (h / 2) < del_c / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
del_c / 2 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

Rabs h * Rabs (/ 2) < del_c * / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
del_c / 2 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

Rabs h * / 2 < del_c * / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
del_c / 2 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

/ 2 * Rabs h < / 2 * del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
del_c / 2 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

0 < / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
Rabs h < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
del_c / 2 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

Rabs h < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
del_c / 2 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

Rabs h < delta
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
delta <= del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
del_c / 2 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

delta <= del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
del_c / 2 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

/ 2 >= 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
del_c / 2 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

del_c / 2 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

0 < del_c / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

0 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2
0 < / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
H9:del_c > 0
H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2
H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2

0 < / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

sin (h * / 2) * (sin (h * / 2) * / (h * / 2)) = sin (h * / 2) * sin (h * / 2) * 2 * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

sin (h * / 2) * (sin (h * / 2) * / (h * / 2)) = sin (h * / 2) * (sin (h * / 2) * (2 * / h))
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

/ (h * / 2) = 2 * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

/ h * / / 2 = 2 * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
h <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
/ 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

/ h * 2 = 2 * / h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
h <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
/ 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
h <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
/ 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

h <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
/ 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

/ 2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

-2 * (sin (h / 2))² = cos h - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

-2 * (sin (h / 2))² = cos (2 * (h / 2)) - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
2 * (h / 2) = h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

-2 * (sin (h / 2))² = 1 - 2 * sin (h / 2) * sin (h / 2) - cos 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta
2 * (h / 2) = h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

2 * (h / 2) = h
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
H6:0 < Rmin del del_c
delta:={| pos := Rmin del del_c; cond_pos := H6 |}:posreal
h:R
H7:h <> 0
H8:Rabs h < delta

2 <> 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)

0 < Rmin del del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
r:del <= del_c

0 < del
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
n:~ del <= del_c
0 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)
H4:0 < eps / 2
del_c:R
H5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)
n:~ del <= del_c

0 < del_c
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H1:0 < eps / 2
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2

continuity_pt sin 0
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
0 < eps / 2
eps:R
H:0 < eps
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0

0 < eps / 2
unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. Qed. (**********)

forall x : R, derivable_pt_lim sin x (cos x)

forall x : R, derivable_pt_lim sin x (cos x)
x:R
H0:derivable_pt_lim sin 0 1

derivable_pt_lim sin x (cos x)
x:R
H0:derivable_pt_lim sin 0 1
H:derivable_pt_lim cos 0 0

derivable_pt_lim sin x (cos x)
x:R
H0:forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps
H:forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps

derivable_pt_lim sin x (cos x)
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R

0 < alp -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs ((sin (x + h) - sin x) / h - cos x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs (sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1)) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs (sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1)) <= Rabs (sin x * ((cos h - 1) / h)) + Rabs (cos x * (sin h / h - 1))
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (sin x * ((cos h - 1) / h)) + Rabs (cos x * (sin h / h - 1)) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs (sin x * ((cos h - 1) / h)) + Rabs (cos x * (sin h / h - 1)) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs (sin x * ((cos h - 1) / h)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs (sin x * ((cos h - 1) / h)) <= Rabs ((cos h - 1) / h)
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs ((cos h - 1) / h) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

0 <= Rabs ((cos h - 1) / h)
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (sin x) <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs ((cos h - 1) / h) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs (sin x) <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs ((cos h - 1) / h) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:-1 <= sin x <= 1
H9:-1 <= sin x
H10:sin x <= 1

Rabs (sin x) <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs ((cos h - 1) / h) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:-1 <= sin x <= 1
H9:-1 <= sin x
H10:sin x <= 1
r:sin x < 0

- sin x <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:-1 <= sin x <= 1
H9:-1 <= sin x
H10:sin x <= 1
r:sin x >= 0
sin x <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs ((cos h - 1) / h) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:-1 <= sin x <= 1
H9:-1 <= sin x
H10:sin x <= 1
r:sin x < 0

- sin x <= - - (1)
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:-1 <= sin x <= 1
H9:-1 <= sin x
H10:sin x <= 1
r:sin x >= 0
sin x <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs ((cos h - 1) / h) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:-1 <= sin x <= 1
H9:-1 <= sin x
H10:sin x <= 1
r:sin x >= 0

sin x <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs ((cos h - 1) / h) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs ((cos h - 1) / h) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs h < alp2 -> Rabs ((cos h - 1) / h) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs h < alp2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:Rabs h < alp2
H9:Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2

Rabs ((cos h - 1) / h) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs h < alp2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs h < alp2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs h < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
alp <= alp2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

alp <= alp2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs (cos x * (sin h / h - 1)) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs (cos x * (sin h / h - 1)) <= Rabs (sin h / h - 1)
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (sin h / h - 1) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

0 <= Rabs (sin h / h - 1)
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (cos x) <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (sin h / h - 1) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs (cos x) <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (sin h / h - 1) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:-1 <= cos x <= 1
H9:-1 <= cos x
H10:cos x <= 1

Rabs (cos x) <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (sin h / h - 1) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:-1 <= cos x <= 1
H9:-1 <= cos x
H10:cos x <= 1
r:cos x < 0

- cos x <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:-1 <= cos x <= 1
H9:-1 <= cos x
H10:cos x <= 1
r:cos x >= 0
cos x <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (sin h / h - 1) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:-1 <= cos x <= 1
H9:-1 <= cos x
H10:cos x <= 1
r:cos x >= 0

cos x <= 1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs (sin h / h - 1) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs (sin h / h - 1) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs h < alp1 -> Rabs (sin h / h - 1) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs h < alp1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
H8:Rabs h < alp1
H9:Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2

Rabs (sin h / h - 1) < eps / 2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
Rabs h < alp1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs h < alp1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

Rabs h < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
alp <= alp1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

alp <= alp1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}
sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2
alp2:posreal
H4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2
alp:=Rmin alp1 alp2:R
H5:0 < alp
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H5 |}

sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin x * cos h + cos x * sin h - sin x) / h - cos x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R

0 < alp
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
r:alp1 <= alp2

0 < alp1
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
n:~ alp1 <= alp2
0 < alp2
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
alp1:posreal
H3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2
alp2:posreal
H4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2
alp:=Rmin alp1 alp2:R
n:~ alp1 <= alp2

0 < alp2
apply (cond_pos alp2). Qed.

forall x : R, derivable_pt_lim cos x (- sin x)

forall x : R, derivable_pt_lim cos x (- sin x)
x:R

(forall h : R, sin (h + PI / 2) = cos h) -> derivable_pt_lim cos x (- sin x)
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h

derivable_pt_lim cos x (cos (x + PI / 2) * (1 + 0))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)

derivable_pt_lim cos x (cos (x + PI / 2) * (1 + 0))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)

derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0) -> derivable_pt_lim cos x (cos (x + PI / 2) * (1 + 0))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)

derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2)) -> derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0) -> derivable_pt_lim cos x (cos (x + PI / 2) * (1 + 0))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
H1:derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))
H2:derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)

derivable_pt_lim (fun x0 : R => sin (x0 + PI / 2)) x (cos (x + PI / 2) * (1 + 0)) -> derivable_pt_lim cos x (cos (x + PI / 2) * (1 + 0))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
H1:derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))
H2:derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
H3:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h + PI / 2) - sin (x + PI / 2)) / h - cos (x + PI / 2) * (1 + 0)) < eps0
eps:R
H4:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (x + h) - cos x) / h - cos (x + PI / 2) * (1 + 0)) < eps
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x1 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x1 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x1) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x1 (l2 * l1)
H1:derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))
H2:derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
H3:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h + PI / 2) - sin (x + PI / 2)) / h - cos (x + PI / 2) * (1 + 0)) < eps0
eps:R
H4:0 < eps
x0:posreal
H5:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((sin (x + h + PI / 2) - sin (x + PI / 2)) / h - cos (x + PI / 2) * (1 + 0)) < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (x + h) - cos x) / h - cos (x + PI / 2) * (1 + 0)) < eps
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x1 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x1 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x1) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x1 (l2 * l1)
H1:derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))
H2:derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
H3:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h + PI / 2) - sin (x + PI / 2)) / h - cos (x + PI / 2) * (1 + 0)) < eps0
eps:R
H4:0 < eps
x0:posreal
H5:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((sin (x + h + PI / 2) - sin (x + PI / 2)) / h - cos (x + PI / 2) * (1 + 0)) < eps

forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((cos (x + h) - cos x) / h - cos (x + PI / 2) * (1 + 0)) < eps
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)

derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)

derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)

derivable_pt_lim id x 1
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)
derivable_pt_lim (fct_cte (PI / 2)) x 0
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h
H0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)

derivable_pt_lim (fct_cte (PI / 2)) x 0
x:R
H:forall h : R, sin (h + PI / 2) = cos h
cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R
H:forall h : R, sin (h + PI / 2) = cos h

cos (x + PI / 2) * (1 + 0) = - sin x
x:R
forall h : R, sin (h + PI / 2) = cos h
x:R

forall h : R, sin (h + PI / 2) = cos h
intro; rewrite cos_sin; rewrite Rplus_comm; reflexivity. Qed.

forall x : R, derivable_pt sin x

forall x : R, derivable_pt sin x
x:R

{l : R | derivable_pt_abs sin x l}
x:R

derivable_pt_abs sin x (cos x)
apply derivable_pt_lim_sin. Qed.

forall x : R, derivable_pt cos x

forall x : R, derivable_pt cos x
x:R

{l : R | derivable_pt_abs cos x l}
x:R

derivable_pt_abs cos x (- sin x)
apply derivable_pt_lim_cos. Qed.

derivable sin

derivable sin
unfold derivable; intro; apply derivable_pt_sin. Qed.

derivable cos

derivable cos
unfold derivable; intro; apply derivable_pt_cos. Qed.

forall x : R, derive_pt sin x (derivable_pt_sin x) = cos x

forall x : R, derive_pt sin x (derivable_pt_sin x) = cos x
x:R

derivable_pt_lim sin x (cos x)
apply derivable_pt_lim_sin. Qed.

forall x : R, derive_pt cos x (derivable_pt_cos x) = - sin x

forall x : R, derive_pt cos x (derivable_pt_cos x) = - sin x
x:R

derivable_pt_lim cos x (- sin x)
apply derivable_pt_lim_cos. Qed.