Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import SeqSeries. Require Import Rtrigo1. Require Import Ranalysis1. Require Import PSeries_reg. Local Open Scope nat_scope. Local Open Scope R_scope. (**********)continuity sincontinuity sinx:Rcontinuity_pt sin xx:RH0:continuity_pt cos (PI / 2 - x)continuity_pt sin xx:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond (PI / 2 - x) x0 /\ Rabs (x0 - (PI / 2 - x)) < alp -> Rabs (cos x0 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sin x0 - sin x) < eps)x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < alp -> Rabs (sin x1 - sin x) < eps)x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)x0 > 0 /\ (forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (sin x1 - sin x) < eps)x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < epsx0 > 0 /\ (forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (sin x1 - sin x) < eps)x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < epsx0 > 0x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < epsforall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (sin x1 - sin x) < epsx:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < alp -> Rabs (cos x1 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x1 : R, D_x no_cond (PI / 2 - x) x1 /\ Rabs (x1 - (PI / 2 - x)) < x0 -> Rabs (cos x1 - cos (PI / 2 - x)) < epsforall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (sin x1 - sin x) < epsx:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < epsx1:RH4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0D_x no_cond (PI / 2 - x) (PI / 2 - x1) /\ Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < epsx1:RH4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H5:D_x no_cond x x1H6:Rabs (x1 - x) < x0D_x no_cond (PI / 2 - x) (PI / 2 - x1) /\ Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < epsx1:RH4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H5:D_x no_cond x x1H6:Rabs (x1 - x) < x0D_x no_cond (PI / 2 - x) (PI / 2 - x1)x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < epsx1:RH4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H5:D_x no_cond x x1H6:Rabs (x1 - x) < x0Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < epsx1:RH4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H5:D_x no_cond x x1H6:Rabs (x1 - x) < x0Truex:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < epsx1:RH4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H5:D_x no_cond x x1H6:Rabs (x1 - x) < x0PI / 2 - x <> PI / 2 - x1x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < epsx1:RH4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H5:D_x no_cond x x1H6:Rabs (x1 - x) < x0Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < epsx1:RH4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H5:D_x no_cond x x1H6:Rabs (x1 - x) < x0PI / 2 - x <> PI / 2 - x1x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < epsx1:RH4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H5:D_x no_cond x x1H6:Rabs (x1 - x) < x0Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0replace (PI / 2 - x1 - (PI / 2 - x)) with (x - x1); [ idtac | ring ]; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply H6. Qed.x:RH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < alp -> Rabs (cos x2 - cos (PI / 2 - x)) < eps0)eps:RH:eps > 0x0:RH1:x0 > 0 /\ (forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < eps)H2:x0 > 0H3:forall x2 : R, D_x no_cond (PI / 2 - x) x2 /\ Rabs (x2 - (PI / 2 - x)) < x0 -> Rabs (cos x2 - cos (PI / 2 - x)) < epsx1:RH4:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H5:D_x no_cond x x1H6:Rabs (x1 - x) < x0Rabs (PI / 2 - x1 - (PI / 2 - x)) < x0forall fn : nat -> R -> R, fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)) -> CVN_R fnforall fn : nat -> R -> R, fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)) -> CVN_R fnfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{An : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}}fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n))}fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l} -> {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n))}fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) x{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n))}fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) xUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) x /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) xUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) xfn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) xforall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n)fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) xforall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= / INR (fact (2 * n + 1)) * r ^ (2 * n)fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r yRabs (/ INR (fact (2 * n + 1))) * Rabs (y ^ (2 * n)) <= / INR (fact (2 * n + 1)) * r ^ (2 * n)fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r y0 < / INR (fact (2 * n + 1)) -> Rabs (/ INR (fact (2 * n + 1))) * Rabs (y ^ (2 * n)) <= / INR (fact (2 * n + 1)) * r ^ (2 * n)fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r y0 < / INR (fact (2 * n + 1))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r yH1:0 < / INR (fact (2 * n + 1))/ INR (fact (2 * n + 1)) * Rabs (y ^ (2 * n)) <= / INR (fact (2 * n + 1)) * r ^ (2 * n)fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r y0 < / INR (fact (2 * n + 1))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r yH1:0 < / INR (fact (2 * n + 1))0 <= / INR (fact (2 * n + 1))fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r yH1:0 < / INR (fact (2 * n + 1))Rabs (y ^ (2 * n)) <= r ^ (2 * n)fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r y0 < / INR (fact (2 * n + 1))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r yH1:0 < / INR (fact (2 * n + 1))Rabs (y ^ (2 * n)) <= r ^ (2 * n)fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r y0 < / INR (fact (2 * n + 1))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r yH1:0 < / INR (fact (2 * n + 1))Rabs (Rabs y) <= rfn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r y0 < / INR (fact (2 * n + 1))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N))r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n0) xn:naty:RH0:Boule 0 r y0 < / INR (fact (2 * n + 1))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0 -> {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n) l}fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0forall n : nat, Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0n:nat/ INR (fact (2 * n + 1)) * r ^ (2 * n) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0n:nat/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0n:natr ^ (2 * n) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0n:natr ^ (2 * n) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:Un_cv (fun n : nat => Rabs (sin_n (S n) / sin_n n)) 0Un_cv (fun n : nat => Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0 < epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r² -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0 < epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n : nat, (n >= N0)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0 < epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natR_dist (Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))) 0 < epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n))) - 0) < epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²0 < / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ r² * Rabs (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < / r² * epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ r² * Rabs (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < / r² * epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ r²) * Rabs (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < / r² * epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ r² >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ r² * (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0)) < / r² * epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ r² >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ r² * (r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) - / r² * 0) < / r² * epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ r² >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (1 * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < / r² * epsfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ r² >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) - 0) < eps * / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ r² >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ r² >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ r² >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² * Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1)))) = Rabs (Rabs (/ INR (fact (2 * S n + 1)) * r ^ (2 * S n)) / Rabs (/ INR (fact (2 * n + 1)) * r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²1 * Rabs (/ INR (fact (2 * S n + 1))) * Rabs (/ ((-1) ^ n * / INR (fact (2 * n + 1)))) * r² = Rabs (/ INR (fact (2 * S n + 1))) * Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * S n + 1))) * Rabs (/ ((-1) ^ n * / INR (fact (2 * n + 1)))) * r² = Rabs (/ INR (fact (2 * S n + 1))) * Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ ((-1) ^ n * / INR (fact (2 * n + 1)))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ (-1) ^ n * / / INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ (-1) ^ n * INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ (-1) ^ n) * Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ Rabs ((-1) ^ n) * Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ (Rabs (/ INR (fact (2 * n + 1))) * Rabs (r ^ (2 * n))))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (/ Rabs (/ INR (fact (2 * n + 1))) * / Rabs (r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (Rabs (/ / INR (fact (2 * n + 1))) * / Rabs (r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * Rabs (Rabs (INR (fact (2 * n + 1))) * / Rabs (r ^ (2 * n)))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (INR (fact (2 * n + 1))) * r² = Rabs (Rabs (r ^ (2 * S n))) * (Rabs (Rabs (INR (fact (2 * n + 1)))) * Rabs (/ Rabs (r ^ (2 * n))))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (INR (fact (2 * n + 1))) * r² = Rabs (r ^ (2 * S n)) * (Rabs (INR (fact (2 * n + 1))) * Rabs (/ Rabs (r ^ (2 * n))))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (INR (fact (2 * n + 1))) * r² = Rabs (INR (fact (2 * n + 1))) * Rabs (/ Rabs (r ^ (2 * n))) * Rabs (r ^ (2 * S n))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² = Rabs (/ Rabs (r ^ (2 * n))) * Rabs (r ^ (2 * S n))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² = / Rabs (Rabs (r ^ (2 * n))) * Rabs (r ^ (2 * S n))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² = / Rabs (r ^ (2 * n)) * Rabs (r ^ (2 * S n))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² = / r ^ (2 * n) * r ^ (2 * S n)fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * S n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² = / r ^ (2 * n) * (r ^ (2 * n) * r * r)fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) * r * r = r ^ (2 * S n)fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * S n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² = / r ^ (2 * n) * r ^ (2 * n) * r * rfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) * r * r = r ^ (2 * S n)fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * S n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r² = 1 * r * rfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) * r * r = r ^ (2 * S n)fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * S n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) * r * r = r ^ (2 * S n)fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * S n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) * r * r = r ^ (2 * S n)fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * S n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) * r * r = r ^ S (S (2 * n))fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²S (S (2 * n)) = (2 * S n)%natfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * S n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²S (S (2 * n)) = (2 * S n)%natfn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * S n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * S n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²r ^ (2 * n) >= 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (/ INR (fact (2 * n + 1))) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²Rabs (r ^ (2 * n)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²(-1) ^ n <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps0eps:RH2:eps > 0H3:0 < eps / r²N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs ((-1) ^ S n0 / INR (fact (2 * S n0 + 1)) / ((-1) ^ n0 / INR (fact (2 * n0 + 1))))) 0 < eps / r²n:natH5:(n >= N0)%natH6:R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps / r²/ INR (fact (2 * n + 1)) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posrealH0:(r : R) <> 0H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs ((-1) ^ S n / INR (fact (2 * S n + 1)) / ((-1) ^ n / INR (fact (2 * n + 1))))) 0 < eps0eps:RH2:eps > 00 < eps / r²fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0assert (H0 := cond_pos r); red; intro; rewrite H1 in H0; elim (Rlt_irrefl _ H0). Qed.fn:nat -> R -> RH:fn = (fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N))r:posreal(r : R) <> 0
(sin h)/h -> 1 when h -> 0
derivable_pt_lim sin 0 1derivable_pt_lim sin 0 1eps:RH:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> Rexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fn -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fn(forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn r -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn r(forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:continuity_pt (SFL fn cv) 0exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsforall h : R, h <> 0 -> Rabs h < {| pos := alp; cond_pos := H4 |} -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs ((sin (0 + h) - sin 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (sin h / h + - (1)) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < eps -> Rabs (sin h / h + - (1)) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1 -> Rabs (sin h / h + - (1)) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1SFL fn cv h = sin h / h -> Rabs (sin h / h + - (1)) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1SFL fn cv h = sin h / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (sin h / h - 1) < epsH9:SFL fn cv 0 = 1H10:SFL fn cv h = sin h / hRabs (sin h / h + - (1)) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1SFL fn cv h = sin h / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1SFL fn cv h = sin h / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1(let (a, _) := cv h in a) = (let (a, _) := exist_sin h² in h * a) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx = (let (a, _) := exist_sin h² in h * a) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:sin_in h² x0x = h * x0 / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:sin_in h² x0x = x0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:sin_in h² x0Un_cv ?Un xeps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:sin_in h² x0Un_cv ?Un x0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:sin_in h² x0Un_cv (fun N : nat => SP fn N h) x0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n) x0 < eps1eps0:RH10:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n) x0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n) x0 < eps1eps0:RH10:eps0 > 0N0:natH11:forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n) x0 < eps0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n) x0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps1eps0:RH10:eps0 > 0N0:natH11:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps0n:natH12:(n >= N0)%natR_dist (sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n) x0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps1eps0:RH10:eps0 > 0N0:natH11:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0 - x0) < eps0n:natH12:(n >= N0)%natRabs (sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) n - x0) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps1eps0:RH10:eps0 > 0N0:natH11:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0 - x0) < eps0n:natH12:(n >= N0)%natRabs (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n - x0) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps1eps0:RH10:eps0 > 0N0:natH11:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0 - x0) < eps0n:natH12:(n >= N0)%natsum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n = sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) neps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x1 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsH9:SFL fn cv 0 = 1x:RHUn:Un_cv (fun N : nat => SP fn N h) xx0:RHsin:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0) x0 < eps1eps0:RH10:eps0 > 0N0:natH11:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n0 - x0) < eps0n:natH12:(n >= N0)%natsum_f_R0 (fun i : nat => (-1) ^ i / INR (fact (2 * i + 1)) * h² ^ i) n = sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * h ^ (2 * k)) neps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsSFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < eps(let (a, _) := cv 0 in a) = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xx = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xUn_cv ?Un xeps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xUn_cv ?Un 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xUn_cv (fun N : nat => SP fn N 0) 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%natR_dist (sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k)) n) 1 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%natRabs (1 - 1) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%nat1 = sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k)) neps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%nat1 = sum_f_R0 (fun k : nat => (-1) ^ k / INR (fact (2 * k + 1)) * 0 ^ (2 * k)) neps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%nat1 = (-1) ^ 0 / INR (fact (2 * 0 + 1)) * 0 ^ (2 * 0) + sum_f_R0 (fun i : nat => (-1) ^ S i / INR (fact (2 * S i + 1)) * 0 ^ (2 * S i)) (Init.Nat.pred n)eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%nat0 = sum_f_R0 (fun i : nat => -1 * (-1) ^ i * / INR (fact (i + S (i + 0) + 1) + (i + S (i + 0) + 1) * fact (i + S (i + 0) + 1)) * (0 * 0 ^ (i + S (i + 0)))) (Init.Nat.pred n)eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n1 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n1) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%natn0:natH11:(n0 <= Init.Nat.pred n)%nat-1 * (-1) ^ n0 * / INR (fact (n0 + S (n0 + 0) + 1) + (n0 + S (n0 + 0) + 1) * fact (n0 + S (n0 + 0) + 1)) * (0 * 0 ^ (n0 + S (n0 + 0))) = 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x0 ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n0 : nat) (y : R), Boule 0 r y -> continuity_pt (fn n0) yH1:Boule 0 r 0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpH8:Rabs (SFL fn cv h - SFL fn cv 0) < epsx:RHUn:Un_cv (fun N : nat => SP fn N 0) xeps0:RH9:eps0 > 0n:natH10:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpD_x no_cond 0 h /\ Rabs (h - 0) < alpeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpD_x no_cond 0 heps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (h - 0) < alpeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpTrueeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alp0 <> heps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (h - 0) < alpeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alp0 <> heps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (h - 0) < alpeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yH1:Boule 0 r 0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < alpRabs (h - 0) < alpeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rH0:forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yBoule 0 r 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rforall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rn:naty:RH0:Boule 0 r ycontinuity_pt (fct_cte ((-1) ^ n / INR (fact (2 * n + 1))) * pow_fct (2 * n)) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rn:naty:RH0:Boule 0 r ycontinuity_pt (fct_cte ((-1) ^ n / INR (fact (2 * n + 1)))) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rn:naty:RH0:Boule 0 r ycontinuity_pt (pow_fct (2 * n)) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rn:naty:RH0:Boule 0 r yderivable_pt (fct_cte ((-1) ^ n / INR (fact (2 * n + 1)))) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rn:naty:RH0:Boule 0 r ycontinuity_pt (pow_fct (2 * n)) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rn:naty:RH0:Boule 0 r ycontinuity_pt (pow_fct (2 * n)) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealX0:CVN_r fn rn:naty:RH0:Boule 0 r yderivable_pt (pow_fct (2 * n)) yeps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:={| pos := 1; cond_pos := Rlt_0_1 |}:posrealCVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fnapply CVN_R_sin; unfold fn; reflexivity. Qed.eps:RH:0 < epsfn:=fun (N : nat) (x : R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N):nat -> R -> RCVN_R fn
((cos h)-1)/h -> 0 when h -> 0
derivable_pt_lim cos 0 0derivable_pt_lim cos 0 0eps:RH:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:derivable_pt_lim sin 0 1exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_c -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealexists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs ((cos (0 + h) - cos 0) / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (-2 * (sin (h / 2))² / h - 0) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (-2 * (sin (h / 2))² / h) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (- (2) * (sin (h / 2))² / h) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (- (2 * (sin (h * / 2))² * / h)) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (2 * (sin (h * / 2))² * / h) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2)) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2)) <= Rabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) + Rabs (sin (h / 2))eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) + Rabs (sin (h / 2)) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) + Rabs (sin (h / 2)) < epseps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) * (sin (h / 2) / (h / 2) - 1)) <= Rabs (sin (h / 2) / (h / 2) - 1)eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta0 <= Rabs (sin (h / 2) / (h / 2) - 1)eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) <= 1eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) <= 1eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:-1 <= sin (h / 2) <= 1Rabs (sin (h / 2)) <= 1eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:-1 <= sin (h / 2) <= 1r:sin (h / 2) < 0- sin (h / 2) <= 1eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:-1 <= sin (h / 2) <= 1r:sin (h / 2) >= 0sin (h / 2) <= 1eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:-1 <= sin (h / 2) <= 1r:sin (h / 2) < 0- sin (h / 2) <= - - (1)eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:-1 <= sin (h / 2) <= 1r:sin (h / 2) >= 0sin (h / 2) <= 1eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:-1 <= sin (h / 2) <= 1r:sin (h / 2) < 0- (1) <= sin (h / 2)eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:-1 <= sin (h / 2) <= 1r:sin (h / 2) >= 0sin (h / 2) <= 1eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:-1 <= sin (h / 2) <= 1r:sin (h / 2) >= 0sin (h / 2) <= 1eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (h / 2) < del -> Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (h / 2) < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:Rabs (h / 2) < delh / 2 <> 0 -> Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:Rabs (h / 2) < delh / 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (h / 2) < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:Rabs (h / 2) < delH10:h / 2 <> 0H11:Rabs ((sin (0 + h / 2) - sin 0) / (h / 2) - 1) < eps / 2Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:Rabs (h / 2) < delh / 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (h / 2) < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:Rabs (h / 2) < delH10:h / 2 <> 0H11:Rabs ((sin (h / 2) - 0) / (h / 2) - 1) < eps / 2Rabs (sin (h / 2) / (h / 2) - 1) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:Rabs (h / 2) < delh / 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (h / 2) < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:Rabs (h / 2) < delh / 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (h / 2) < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:Rabs (h / 2) < delh <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:Rabs (h / 2) < del/ 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (h / 2) < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:Rabs (h / 2) < del/ 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (h / 2) < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (h / 2) < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (h / 2) < del / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadel / 2 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs h * Rabs (/ 2) < del * / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadel / 2 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs h * / 2 < del * / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadel / 2 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta0 < / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs h < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadel / 2 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs h < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadel / 2 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs h < deltaeps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadelta <= deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadel / 2 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadelta <= deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadel / 2 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadel / 2 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltadel / 2 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta0 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta0 < / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta0 < / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaRabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2 - 0) < del_c -> Rabs (sin (h / 2) - sin 0) < eps / 2Rabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs (sin (h / 2)) < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2D_x no_cond 0 (h / 2)eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs (h / 2) < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Trueeps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 20 <> h / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs (h / 2) < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 20 <> h / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs (h / 2) < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2h <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2/ 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs (h / 2) < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2/ 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs (h / 2) < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs (h / 2) < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs (h / 2) < del_c / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2del_c / 2 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs h * Rabs (/ 2) < del_c * / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2del_c / 2 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs h * / 2 < del_c * / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2del_c / 2 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2/ 2 * Rabs h < / 2 * del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2del_c / 2 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 20 < / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs h < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2del_c / 2 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs h < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2del_c / 2 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2Rabs h < deltaeps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2delta <= del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2del_c / 2 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2delta <= del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2del_c / 2 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2/ 2 >= 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2del_c / 2 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 2del_c / 2 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 20 < del_c / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 20 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 20 < / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltaH9:del_c > 0H10:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2H11:D_x no_cond 0 (h / 2) /\ Rabs (h / 2) < del_c -> Rabs (sin (h / 2)) < eps / 20 < / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h / 2) * (sin (h / 2) / (h / 2) - 1) + sin (h / 2) = 2 * (sin (h * / 2))² * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h * / 2) * (sin (h * / 2) * / (h * / 2)) = sin (h * / 2) * sin (h * / 2) * 2 * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltasin (h * / 2) * (sin (h * / 2) * / (h * / 2)) = sin (h * / 2) * (sin (h * / 2) * (2 * / h))eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ (h * / 2) = 2 * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ h * / / 2 = 2 * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltah <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ h * 2 = 2 * / heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltah <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltah <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < deltah <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta/ 2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos h - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = cos (2 * (h / 2)) - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta2 * (h / 2) = heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta-2 * (sin (h / 2))² = 1 - 2 * sin (h / 2) * sin (h / 2) - cos 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta2 * (h / 2) = heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta2 * (h / 2) = heps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)H6:0 < Rmin del del_cdelta:={| pos := Rmin del del_c; cond_pos := H6 |}:posrealh:RH7:h <> 0H8:Rabs h < delta2 <> 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)0 < Rmin del del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)r:del <= del_c0 < deleps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)n:~ del <= del_c0 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2H3:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (sin x - sin 0) < eps0)H4:0 < eps / 2del_c:RH5:del_c > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < del_c -> Rabs (sin x - sin 0) < eps / 2)n:~ del <= del_c0 < del_ceps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H1:0 < eps / 2del:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2continuity_pt sin 0eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. Qed. (**********)eps:RH:0 < epsH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps00 < eps / 2forall x : R, derivable_pt_lim sin x (cos x)forall x : R, derivable_pt_lim sin x (cos x)x:RH0:derivable_pt_lim sin 0 1derivable_pt_lim sin x (cos x)x:RH0:derivable_pt_lim sin 0 1H:derivable_pt_lim cos 0 0derivable_pt_lim sin x (cos x)x:RH0:forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < epsH:forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < epsderivable_pt_lim sin x (cos x)x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:Rexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alp -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h) - sin x) / h - cos x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs ((sin (x + h) - sin x) / h - cos x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1)) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1)) <= Rabs (sin x * ((cos h - 1) / h)) + Rabs (cos x * (sin h / h - 1))x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin x * ((cos h - 1) / h)) + Rabs (cos x * (sin h / h - 1)) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin x * ((cos h - 1) / h)) + Rabs (cos x * (sin h / h - 1)) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin x * ((cos h - 1) / h)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin x * ((cos h - 1) / h)) <= Rabs ((cos h - 1) / h)x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs ((cos h - 1) / h) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}0 <= Rabs ((cos h - 1) / h)x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin x) <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs ((cos h - 1) / h) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin x) <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs ((cos h - 1) / h) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:-1 <= sin x <= 1H9:-1 <= sin xH10:sin x <= 1Rabs (sin x) <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs ((cos h - 1) / h) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:-1 <= sin x <= 1H9:-1 <= sin xH10:sin x <= 1r:sin x < 0- sin x <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:-1 <= sin x <= 1H9:-1 <= sin xH10:sin x <= 1r:sin x >= 0sin x <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs ((cos h - 1) / h) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:-1 <= sin x <= 1H9:-1 <= sin xH10:sin x <= 1r:sin x < 0- sin x <= - - (1)x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:-1 <= sin x <= 1H9:-1 <= sin xH10:sin x <= 1r:sin x >= 0sin x <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs ((cos h - 1) / h) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:-1 <= sin x <= 1H9:-1 <= sin xH10:sin x <= 1r:sin x >= 0sin x <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs ((cos h - 1) / h) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs ((cos h - 1) / h) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs h < alp2 -> Rabs ((cos h - 1) / h) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs h < alp2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:Rabs h < alp2H9:Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2Rabs ((cos h - 1) / h) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs h < alp2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs h < alp2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs h < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}alp <= alp2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}alp <= alp2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x * (sin h / h - 1)) <= Rabs (sin h / h - 1)x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin h / h - 1) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}0 <= Rabs (sin h / h - 1)x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x) <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin h / h - 1) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (cos x) <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin h / h - 1) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:-1 <= cos x <= 1H9:-1 <= cos xH10:cos x <= 1Rabs (cos x) <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin h / h - 1) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:-1 <= cos x <= 1H9:-1 <= cos xH10:cos x <= 1r:cos x < 0- cos x <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:-1 <= cos x <= 1H9:-1 <= cos xH10:cos x <= 1r:cos x >= 0cos x <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin h / h - 1) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:-1 <= cos x <= 1H9:-1 <= cos xH10:cos x <= 1r:cos x >= 0cos x <= 1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin h / h - 1) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs (sin h / h - 1) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs h < alp1 -> Rabs (sin h / h - 1) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs h < alp1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}H8:Rabs h < alp1H9:Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2Rabs (sin h / h - 1) < eps / 2x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs h < alp1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs h < alp1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}Rabs h < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}alp <= alp1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}alp <= alp1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin (x + h) - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h0 : R, h0 <> 0 -> Rabs h0 < alp1 -> Rabs ((sin (0 + h0) - sin 0) / h0 - 1) < eps / 2alp2:posrealH4:forall h0 : R, h0 <> 0 -> Rabs h0 < alp2 -> Rabs ((cos (0 + h0) - cos 0) / h0 - 0) < eps / 2alp:=Rmin alp1 alp2:RH5:0 < alph:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H5 |}sin x * ((cos h - 1) / h) + cos x * (sin h / h - 1) = (sin x * cos h + cos x * sin h - sin x) / h - cos xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:R0 < alpx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:Rr:alp1 <= alp20 < alp1x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:Rn:~ alp1 <= alp20 < alp2apply (cond_pos alp2). Qed.x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps0H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps0eps:RH1:0 < epsH2:0 < eps / 2alp1:posrealH3:forall h : R, h <> 0 -> Rabs h < alp1 -> Rabs ((sin (0 + h) - sin 0) / h - 1) < eps / 2alp2:posrealH4:forall h : R, h <> 0 -> Rabs h < alp2 -> Rabs ((cos (0 + h) - cos 0) / h - 0) < eps / 2alp:=Rmin alp1 alp2:Rn:~ alp1 <= alp20 < alp2forall x : R, derivable_pt_lim cos x (- sin x)forall x : R, derivable_pt_lim cos x (- sin x)x:R(forall h : R, sin (h + PI / 2) = cos h) -> derivable_pt_lim cos x (- sin x)x:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hderivable_pt_lim cos x (cos (x + PI / 2) * (1 + 0))x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim cos x (cos (x + PI / 2) * (1 + 0))x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0) -> derivable_pt_lim cos x (cos (x + PI / 2) * (1 + 0))x:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2)) -> derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0) -> derivable_pt_lim cos x (cos (x + PI / 2) * (1 + 0))x:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))x:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)H1:derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))H2:derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)derivable_pt_lim (fun x0 : R => sin (x0 + PI / 2)) x (cos (x + PI / 2) * (1 + 0)) -> derivable_pt_lim cos x (cos (x + PI / 2) * (1 + 0))x:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))x:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)H1:derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))H2:derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)H3:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h + PI / 2) - sin (x + PI / 2)) / h - cos (x + PI / 2) * (1 + 0)) < eps0eps:RH4:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (x + h) - cos x) / h - cos (x + PI / 2) * (1 + 0)) < epsx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))x:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x1 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x1 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x1) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x1 (l2 * l1)H1:derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))H2:derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)H3:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h + PI / 2) - sin (x + PI / 2)) / h - cos (x + PI / 2) * (1 + 0)) < eps0eps:RH4:0 < epsx0:posrealH5:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((sin (x + h + PI / 2) - sin (x + PI / 2)) / h - cos (x + PI / 2) * (1 + 0)) < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((cos (x + h) - cos x) / h - cos (x + PI / 2) * (1 + 0)) < epsx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))x:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x1 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x1 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x1) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x1 (l2 * l1)H1:derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))H2:derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)H3:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sin (x + h + PI / 2) - sin (x + PI / 2)) / h - cos (x + PI / 2) * (1 + 0)) < eps0eps:RH4:0 < epsx0:posrealH5:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((sin (x + h + PI / 2) - sin (x + PI / 2)) / h - cos (x + PI / 2) * (1 + 0)) < epsforall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((cos (x + h) - cos x) / h - cos (x + PI / 2) * (1 + 0)) < epsx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))x:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x) (cos (x + PI / 2))x:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (id + fct_cte (PI / 2)) x (1 + 0)x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim id x 1x:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (fct_cte (PI / 2)) x 0x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hH0:forall x0 l1 l2 : R, derivable_pt_lim (id + fct_cte (PI / 2)) x0 l1 -> derivable_pt_lim sin ((id + fct_cte (PI / 2))%F x0) l2 -> derivable_pt_lim (comp sin (id + fct_cte (PI / 2))) x0 (l2 * l1)derivable_pt_lim (fct_cte (PI / 2)) x 0x:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hx:RH:forall h : R, sin (h + PI / 2) = cos hcos (x + PI / 2) * (1 + 0) = - sin xx:Rforall h : R, sin (h + PI / 2) = cos hintro; rewrite cos_sin; rewrite Rplus_comm; reflexivity. Qed.x:Rforall h : R, sin (h + PI / 2) = cos hforall x : R, derivable_pt sin xforall x : R, derivable_pt sin xx:R{l : R | derivable_pt_abs sin x l}apply derivable_pt_lim_sin. Qed.x:Rderivable_pt_abs sin x (cos x)forall x : R, derivable_pt cos xforall x : R, derivable_pt cos xx:R{l : R | derivable_pt_abs cos x l}apply derivable_pt_lim_cos. Qed.x:Rderivable_pt_abs cos x (- sin x)derivable sinunfold derivable; intro; apply derivable_pt_sin. Qed.derivable sinderivable cosunfold derivable; intro; apply derivable_pt_cos. Qed.derivable cosforall x : R, derive_pt sin x (derivable_pt_sin x) = cos xforall x : R, derive_pt sin x (derivable_pt_sin x) = cos xapply derivable_pt_lim_sin. Qed.x:Rderivable_pt_lim sin x (cos x)forall x : R, derive_pt cos x (derivable_pt_cos x) = - sin xforall x : R, derive_pt cos x (derivable_pt_cos x) = - sin xapply derivable_pt_lim_cos. Qed.x:Rderivable_pt_lim cos x (- sin x)