Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import Rseries. Require Import Max. Require Import Omega. Local Open Scope R_scope. (*****************************************************************)
Convergence properties of sequences
(*****************************************************************) Definition Un_decreasing (Un:nat -> R) : Prop := forall n:nat, Un (S n) <= Un n. Definition opp_seq (Un:nat -> R) (n:nat) : R := - Un n. Definition has_ub (Un:nat -> R) : Prop := bound (EUn Un). Definition has_lb (Un:nat -> R) : Prop := bound (EUn (opp_seq Un)). (**********)forall Un : nat -> R, Un_growing Un -> has_ub Un -> {l : R | Un_cv Un l}forall Un : nat -> R, Un_growing Un -> has_ub Un -> {l : R | Un_cv Un l}Un:nat -> RHug:Un_growing UnHeub:has_ub Un{l : R | Un_cv Un l}Un:nat -> RHug:Un_growing UnHeub:has_ub UnUn_cv Un (proj1_sig (completeness (EUn Un) Heub (EUn_noempty Un)))now apply Un_cv_crit_lub. Qed.Un:nat -> RHug:Un_growing UnHeub:has_ub Unl:RH:is_lub (EUn Un) lUn_cv Un (proj1_sig (exist (fun m : R => is_lub (EUn Un) m) l H))forall Un : nat -> R, Un_decreasing Un -> Un_growing (opp_seq Un)forall Un : nat -> R, Un_decreasing Un -> Un_growing (opp_seq Un)Un:nat -> RUn_decreasing Un -> Un_growing (opp_seq Un)Un:nat -> R(forall n : nat, Un (S n) <= Un n) -> forall n : nat, - Un n <= - Un (S n)Un:nat -> RH:forall n0 : nat, Un (S n0) <= Un n0n:nat- Un n <= - Un (S n)apply H. Qed.Un:nat -> RH:forall n0 : nat, Un (S n0) <= Un n0n:natUn (S n) <= Un nforall Un : nat -> R, Un_decreasing Un -> has_lb Un -> {l : R | Un_cv Un l}forall Un : nat -> R, Un_decreasing Un -> has_lb Un -> {l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb Un{l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb Un({l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}) -> {l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb Un{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb UnX:{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}{l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb Un{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb UnX:{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}{l : R | Un_cv (opp_seq Un) l}Un:nat -> RH:Un_decreasing UnH0:has_lb Un{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb UnX:{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}Un_growing (opp_seq Un)Un:nat -> RH:Un_decreasing UnH0:has_lb UnX:{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}has_ub (opp_seq Un)Un:nat -> RH:Un_decreasing UnH0:has_lb Un{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb UnX:{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}has_ub (opp_seq Un)Un:nat -> RH:Un_decreasing UnH0:has_lb Un{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb Un{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:Un_cv (opp_seq Un) x{l : R | Un_cv Un l}Un:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:Un_cv (opp_seq Un) xUn_cv Un (- x)Un:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (opp_seq Un n) x < epsUn_cv Un (- x)Un:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (opp_seq Un n - x) < epsUn_cv Un (- x)Un:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (- Un n - x) < epsUn_cv Un (- x)Un:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (- Un n - x) < epsforall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Un n) (- x) < epsUn:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (- Un n - x) < epsforall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - - x) < epsUn:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (- Un n - x) < eps0eps:RH1:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - - x) < epsUn:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (- Un n - x) < eps0eps:RH1:eps > 0x0:natH2:forall n : nat, (n >= x0)%nat -> Rabs (- Un n - x) < epsexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - - x) < epsUn:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (- Un n0 - x) < eps0eps:RH1:eps > 0x0:natH2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (- Un n0 - x) < epsn:natH3:(n >= x0)%natRabs (Un n - - x) < epsUn:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (- Un n0 - x) < eps0eps:RH1:eps > 0x0:natH2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (- Un n0 - x) < epsn:natH3:(n >= x0)%natH4:Rabs (- Un n - x) < epsRabs (Un n - - x) < epsreplace (- (Un n - - x)) with (- Un n - x); [ assumption | ring ]. Qed. (***********)Un:nat -> RH:Un_decreasing UnH0:has_lb Unx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (- Un n0 - x) < eps0eps:RH1:eps > 0x0:natH2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (- Un n0 - x) < epsn:natH3:(n >= x0)%natH4:Rabs (- Un n - x) < epsRabs (- (Un n - - x)) < epsforall Un : nat -> R, has_ub Un -> {l : R | is_lub (EUn Un) l}forall Un : nat -> R, has_ub Un -> {l : R | is_lub (EUn Un) l}Un:nat -> RH:has_ub Un{l : R | is_lub (EUn Un) l}Un:nat -> RH:bound (EUn Un){l : R | is_lub (EUn Un) l}Un:nat -> RH:bound (EUn Un)bound (EUn Un)Un:nat -> RH:bound (EUn Un)exists x : R, EUn Un xUn:nat -> RH:bound (EUn Un)exists x : R, EUn Un xUn:nat -> RH:bound (EUn Un)EUn Un (Un 0%nat)exists 0%nat; reflexivity. Qed. (**********)Un:nat -> RH:bound (EUn Un)exists i : nat, Un 0%nat = Un iforall Un : nat -> R, has_lb Un -> {l : R | is_lub (EUn (opp_seq Un)) l}forall Un : nat -> R, has_lb Un -> {l : R | is_lub (EUn (opp_seq Un)) l}Un:nat -> RH:bound (EUn (opp_seq Un)){l : R | is_lub (EUn (opp_seq Un)) l}Un:nat -> RH:bound (EUn (opp_seq Un))bound (EUn (opp_seq Un))Un:nat -> RH:bound (EUn (opp_seq Un))exists x : R, EUn (opp_seq Un) xUn:nat -> RH:bound (EUn (opp_seq Un))exists x : R, EUn (opp_seq Un) xUn:nat -> RH:bound (EUn (opp_seq Un))EUn (opp_seq Un) (- Un 0%nat)reflexivity. Qed. Definition lub (Un:nat -> R) (pr:has_ub Un) : R := let (a,_) := ub_to_lub Un pr in a. Definition glb (Un:nat -> R) (pr:has_lb Un) : R := let (a,_) := lb_to_glb Un pr in - a. (* Compatibility with previous unappropriate terminology *) Notation maj_sup := ub_to_lub (only parsing). Notation min_inf := lb_to_glb (only parsing). Notation majorant := lub (only parsing). Notation minorant := glb (only parsing).Un:nat -> RH:bound (EUn (opp_seq Un))- Un 0%nat = opp_seq Un 0forall (Un : nat -> R) (k : nat), has_ub Un -> has_ub (fun i : nat => Un (k + i)%nat)forall (Un : nat -> R) (k : nat), has_ub Un -> has_ub (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:has_ub Unhas_ub (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:bound (EUn Un)has_ub (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn Un) mhas_ub (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn Un) mx:RH0:is_upper_bound (EUn Un) xhas_ub (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn Un) mx:RH0:forall x0 : R, EUn Un x0 -> x0 <= xhas_ub (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn Un) mx:RH0:forall x0 : R, EUn Un x0 -> x0 <= xbound (EUn (fun i : nat => Un (k + i)%nat))Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn Un) mx:RH0:forall x0 : R, EUn Un x0 -> x0 <= xis_upper_bound (EUn (fun i : nat => Un (k + i)%nat)) xUn:nat -> Rk:natH:exists m : R, is_upper_bound (EUn Un) mx:RH0:forall x0 : R, EUn Un x0 -> x0 <= xforall x0 : R, EUn (fun i : nat => Un (k + i)%nat) x0 -> x0 <= xUn:nat -> Rk:natH:exists m : R, is_upper_bound (EUn Un) mx:RH0:forall x1 : R, EUn Un x1 -> x1 <= xx0:RH1:EUn (fun i : nat => Un (k + i)%nat) x0x0 <= xUn:nat -> Rk:natH:exists m : R, is_upper_bound (EUn Un) mx:RH0:forall x1 : R, EUn Un x1 -> x1 <= xx0:RH1:EUn (fun i : nat => Un (k + i)%nat) x0EUn Un x0exists (k + x1)%nat; assumption. Qed.Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn Un) mx:RH0:forall x2 : R, EUn Un x2 -> x2 <= xx0:RH1:EUn (fun i : nat => Un (k + i)%nat) x0x1:natH2:x0 = Un (k + x1)%natEUn Un x0forall (Un : nat -> R) (k : nat), has_lb Un -> has_lb (fun i : nat => Un (k + i)%nat)forall (Un : nat -> R) (k : nat), has_lb Un -> has_lb (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:has_lb Unhas_lb (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:bound (EUn (opp_seq Un))has_lb (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn (opp_seq Un)) mhas_lb (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn (opp_seq Un)) mx:RH0:is_upper_bound (EUn (opp_seq Un)) xhas_lb (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn (opp_seq Un)) mx:RH0:forall x0 : R, EUn (opp_seq Un) x0 -> x0 <= xhas_lb (fun i : nat => Un (k + i)%nat)Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn (opp_seq Un)) mx:RH0:forall x0 : R, EUn (opp_seq Un) x0 -> x0 <= xbound (EUn (opp_seq (fun i : nat => Un (k + i)%nat)))Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn (opp_seq Un)) mx:RH0:forall x0 : R, EUn (opp_seq Un) x0 -> x0 <= xis_upper_bound (EUn (opp_seq (fun i : nat => Un (k + i)%nat))) xUn:nat -> Rk:natH:exists m : R, is_upper_bound (EUn (opp_seq Un)) mx:RH0:forall x0 : R, EUn (opp_seq Un) x0 -> x0 <= xforall x0 : R, EUn (opp_seq (fun i : nat => Un (k + i)%nat)) x0 -> x0 <= xUn:nat -> Rk:natH:exists m : R, is_upper_bound (EUn (opp_seq Un)) mx:RH0:forall x1 : R, EUn (opp_seq Un) x1 -> x1 <= xx0:RH1:EUn (opp_seq (fun i : nat => Un (k + i)%nat)) x0x0 <= xUn:nat -> Rk:natH:exists m : R, is_upper_bound (EUn (opp_seq Un)) mx:RH0:forall x1 : R, EUn (opp_seq Un) x1 -> x1 <= xx0:RH1:EUn (opp_seq (fun i : nat => Un (k + i)%nat)) x0EUn (opp_seq Un) x0exists (k + x1)%nat; assumption. Qed. Definition sequence_ub (Un:nat -> R) (pr:has_ub Un) (i:nat) : R := lub (fun k:nat => Un (i + k)%nat) (maj_ss Un i pr). Definition sequence_lb (Un:nat -> R) (pr:has_lb Un) (i:nat) : R := glb (fun k:nat => Un (i + k)%nat) (min_ss Un i pr). (* Compatibility *) Notation sequence_majorant := sequence_ub (only parsing). Notation sequence_minorant := sequence_lb (only parsing).Un:nat -> Rk:natH:exists m : R, is_upper_bound (EUn (opp_seq Un)) mx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (fun i : nat => Un (k + i)%nat)) x0x1:natH2:x0 = opp_seq (fun i : nat => Un (k + i)%nat) x1EUn (opp_seq Un) x0forall (Un : nat -> R) (pr : has_ub Un), Un_decreasing (sequence_ub Un pr)forall (Un : nat -> R) (pr : has_ub Un), Un_decreasing (sequence_ub Un pr)Un:nat -> Rpr:has_ub UnUn_decreasing (sequence_ub Un pr)Un:nat -> Rpr:has_ub Unforall n : nat, sequence_ub Un pr (S n) <= sequence_ub Un pr nUn:nat -> Rpr:has_ub Unn:natsequence_ub Un pr (S n) <= sequence_ub Un pr nUn:nat -> Rpr:has_ub Unn:natlub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xx <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0x <= x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0forall x1 : R, EUn (fun k : nat => Un (S n + k)%nat) x1 -> x1 <= x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0x1:RH5:EUn (fun k : nat => Un (S n + k)%nat) x1x1 <= x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:forall x2 : R, EUn (fun k : nat => Un (n + k)%nat) x2 -> x2 <= x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0x1:RH5:EUn (fun k : nat => Un (S n + k)%nat) x1x1 <= x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:forall x2 : R, EUn (fun k : nat => Un (n + k)%nat) x2 -> x2 <= x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0x1:RH5:EUn (fun k : nat => Un (S n + k)%nat) x1EUn (fun k : nat => Un (n + k)%nat) x1Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:forall x3 : R, EUn (fun k : nat => Un (n + k)%nat) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0x1:RH5:EUn (fun k : nat => Un (S n + k)%nat) x1x2:natH:x1 = Un (S n + x2)%natEUn (fun k : nat => Un (n + k)%nat) x1Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:forall x3 : R, EUn (fun k : nat => Un (n + k)%nat) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0x1:RH5:EUn (fun k : nat => Un (S n + k)%nat) x1x2:natH:x1 = Un (S n + x2)%natx1 = Un (n + (1 + x2))%natUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:forall x3 : R, EUn (fun k : nat => Un (n + k)%nat) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0x1:RH5:EUn (fun k : nat => Un (S n + k)%nat) x1x2:natH:x1 = Un (S n + x2)%natx1 = Un (S n + x2)%natUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:forall x3 : R, EUn (fun k : nat => Un (n + k)%nat) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0x1:RH5:EUn (fun k : nat => Un (S n + k)%nat) x1x2:natH:x1 = Un (S n + x2)%nat(S n + x2)%nat = (n + (1 + x2))%natUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:forall x3 : R, EUn (fun k : nat => Un (n + k)%nat) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xMaj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0x1:RH5:EUn (fun k : nat => Un (S n + k)%nat) x1x2:natH:x1 = Un (S n + x2)%nat(S n + x2)%nat = (n + (1 + x2))%natUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xlub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)) -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xH5:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) <= blub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xH5:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) <= bH7:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) <= x0lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xH5:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) <= bH7:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) <= x0H8:x0 <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (let (a, _) := ub_to_lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) in a)Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bMaj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xforall x1 : R, is_lub (EUn (fun k : nat => Un (n + k)%nat)) x1 -> is_lub (EUn (fun k : nat => Un (n + k)%nat)) x1Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bis_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)) -> lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bis_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bH5:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= blub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bis_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bH5:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= bH7:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= xlub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bis_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bH5:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= bH7:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= xH8:x <= lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = xUn:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bis_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bis_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bis_lub (EUn (fun k : nat => Un (S n + k)%nat)) (let (a, _) := ub_to_lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) in a)trivial. Qed.Un:nat -> Rpr:has_ub Unn:natx:RH1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) xH2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= bx0:RH3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= bforall x1 : R, is_lub (EUn (fun k : nat => Un (S n + k)%nat)) x1 -> is_lub (EUn (fun k : nat => Un (S n + k)%nat)) x1forall (Un : nat -> R) (pr : has_lb Un), Un_growing (sequence_lb Un pr)forall (Un : nat -> R) (pr : has_lb Un), Un_growing (sequence_lb Un pr)Un:nat -> Rpr:has_lb UnUn_growing (sequence_lb Un pr)Un:nat -> Rpr:has_lb Unforall n : nat, sequence_lb Un pr n <= sequence_lb Un pr (S n)Un:nat -> Rpr:has_lb Unn:natsequence_lb Un pr n <= sequence_lb Un pr (S n)Un:nat -> Rpr:has_lb Unn:natglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0- x0 <= - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0- x0 <= - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0- x0 <= - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b- x0 <= - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bx <= x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bis_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bis_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bforall x1 : R, EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1 -> x1 <= x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bx1:RH5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1x1 <= x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:forall x2 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x2 -> x2 <= x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bx1:RH5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1x1 <= x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:forall x2 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x2 -> x2 <= x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bx1:RH5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x1Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bx1:RH5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1x2:natH6:x1 = opp_seq (fun k : nat => Un (S n + k)%nat) x2EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x1Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bx1:RH5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1x2:natH6:x1 = opp_seq (fun k : nat => Un (S n + k)%nat) x2x1 = opp_seq (fun k : nat => Un (n + k)%nat) (1 + x2)Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bx1:RH5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1x2:natH6:x1 = - Un (S n + x2)%natx1 = opp_seq (fun k : nat => Un (n + k)%nat) (1 + x2)Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bx1:RH5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1x2:natH6:x1 = - Un (S n + x2)%natx1 = - Un (n + (1 + x2))%natUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bx1:RH5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1x2:natH6:x1 = - Un (S n + x2)%natx1 = - Un (S n + x2)%natUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bx1:RH5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1x2:natH6:x1 = - Un (S n + x2)%nat(S n + x2)%nat = (n + (1 + x2))%natUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xMaj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bx1:RH5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1x2:natH6:x1 = - Un (S n + x2)%nat(S n + x2)%nat = (n + (1 + x2))%natUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) -> glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xH1:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xH1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b)glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xH1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b)H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bH4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= bglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xH1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b)H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bH4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= bH6:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= x0glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xH1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b)H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bH4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= bH6:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= x0H7:x0 <= - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xH1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b)H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= bH4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= bH6:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= x0H7:x0 <= - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)- - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- (let (a, _) := lb_to_glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) in - a))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xforall x1 : R, is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x1 -> is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- - x1)Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xx1:Ris_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x1 -> is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x1Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) -> glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H1:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b)glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b)H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= bglb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b)H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= bH6:- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= xglb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b)H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= bH6:- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= xH7:x <= - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)x0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b)H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xH3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= bH4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= bH6:- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= xH7:x <= - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)- - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - xUn:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- (let (a, _) := lb_to_glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) in - a))Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0forall x1 : R, is_lub (EUn (opp_seq (fun k : nat => Un (S (n + k))))) x1 -> is_lub (EUn (opp_seq (fun k : nat => Un (S (n + k))))) (- - x1)trivial. Qed. (**********)Un:nat -> Rpr:has_lb Unn:natH:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) xx0:Rp0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0x1:Ris_lub (EUn (opp_seq (fun k : nat => Un (S (n + k))))) x1 -> is_lub (EUn (opp_seq (fun k : nat => Un (S (n + k))))) x1forall (Un : nat -> R) (pr1 : has_ub Un) (pr2 : has_lb Un) (n : nat), sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nforall (Un : nat -> R) (pr1 : has_ub Un) (pr2 : has_lb Un) (n : nat), sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natsequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natsequence_lb Un pr2 n <= Un nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= Un nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l} -> glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= Un nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= Un nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xglb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= Un nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x <= Un nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)- x <= Un nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xH0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b- x <= Un nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= xH0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b- x <= Un nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= xH0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b- x <= - - Un nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= xH0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b- Un n <= xUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= xH0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= bEUn (opp_seq (fun i : nat => Un (n + i)%nat)) (- Un n)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= xH0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b- Un n = opp_seq (fun i : nat => Un (n + i)%nat) 0Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= xH0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b- Un n = - Un (n + 0)%natUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) -> - x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xH:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b)- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b)H0:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xH1:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= bH2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b)H0:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xH1:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= bH2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= bH4:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= x- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b)H0:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xH1:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= bH2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= bH4:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= xH5:x <= - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)H:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b)H0:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xH1:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= bH2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= bH4:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= xH5:x <= - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)- x = - - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xis_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- (let (a, _) := lb_to_glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) in - a))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xforall x0 : R, is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 -> is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- - x0)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}x:Rp:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) xx0:Ris_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 -> is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nathas_lb (fun i : nat => Un (n + i)%nat)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= sequence_ub Un pr1 nUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natUn n <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l} -> Un n <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un n <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xUn n <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xUn n <= xUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xx = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)Un n <= xUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xx = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)H:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) xH0:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= bUn n <= xUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xx = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)H:forall x0 : R, EUn (fun i : nat => Un (n + i)%nat) x0 -> x0 <= xH0:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= bUn n <= xUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xx = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)H:forall x0 : R, EUn (fun i : nat => Un (n + i)%nat) x0 -> x0 <= xH0:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= bEUn (fun i : nat => Un (n + i)%nat) (Un n)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xx = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)H:forall x0 : R, EUn (fun i : nat => Un (n + i)%nat) x0 -> x0 <= xH0:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= bUn n = Un (n + 0)%natUn:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xx = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xx = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)) -> x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xH:is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)H:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)) /\ (forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b)x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)H:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)) /\ (forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b)H0:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) xH1:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= bH2:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))H3:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= bx = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)H:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)) /\ (forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b)H0:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) xH1:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= bH2:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))H3:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= bH4:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= xx = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)H:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)) /\ (forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b)H0:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) xH1:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= bH2:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))H3:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= bH4:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= xH5:x <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xis_lub (EUn (fun k : nat => Un (n + k)%nat)) (let (a, _) := ub_to_lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) in a)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:natX:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}x:Rp:is_lub (EUn (fun i : nat => Un (n + i)%nat)) xforall x0 : R, is_lub (EUn (fun k : nat => Un (n + k)%nat)) x0 -> is_lub (EUn (fun k : nat => Un (n + k)%nat)) x0Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nat{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}apply maj_ss; assumption. Qed.Un:nat -> Rpr1:has_ub Unpr2:has_lb Unn:nathas_ub (fun i : nat => Un (n + i)%nat)forall Un : nat -> R, has_ub Un -> forall pr2 : has_lb Un, has_ub (sequence_lb Un pr2)forall Un : nat -> R, has_ub Un -> forall pr2 : has_lb Un, has_ub (sequence_lb Un pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unhas_ub (sequence_lb Un pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nhas_ub (sequence_lb Un pr2)Un:nat -> Rpr1:has_ub Unpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nbound (EUn (sequence_lb Un pr2))Un:nat -> Rpr1:has_ub Unpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nexists m : R, is_upper_bound (EUn (sequence_lb Un pr2)) mUn:nat -> Rpr1:bound (EUn Un)pr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nexists m : R, is_upper_bound (EUn (sequence_lb Un pr2)) mUn:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nexists m : R, is_upper_bound (EUn (sequence_lb Un pr2)) mUn:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:is_upper_bound (EUn Un) xexists m : R, is_upper_bound (EUn (sequence_lb Un pr2)) mUn:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:is_upper_bound (EUn Un) xis_upper_bound (EUn (sequence_lb Un pr2)) xUn:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:is_upper_bound (EUn Un) xforall x0 : R, EUn (sequence_lb Un pr2) x0 -> x0 <= xUn:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:is_upper_bound (EUn Un) xx0:RH1:EUn (sequence_lb Un pr2) x0x0 <= xUn:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x1 : R, EUn Un x1 -> x1 <= xx0:RH1:EUn (sequence_lb Un pr2) x0x0 <= xUn:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn Un x2 -> x2 <= xx0:RH1:EUn (sequence_lb Un pr2) x0x1:natH2:x0 = sequence_lb Un pr2 x1x0 <= xUn:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn Un x2 -> x2 <= xx0:RH1:EUn (sequence_lb Un pr2) x0x1:natH2:x0 = sequence_lb Un pr2 x1sequence_lb Un pr2 x1 <= xUn:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn Un x2 -> x2 <= xx0:RH1:EUn (sequence_lb Un pr2) x0x1:natH2:x0 = sequence_lb Un pr2 x1sequence_lb Un pr2 x1 <= Un x1Un:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn Un x2 -> x2 <= xx0:RH1:EUn (sequence_lb Un pr2) x0x1:natH2:x0 = sequence_lb Un pr2 x1Un x1 <= xUn:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn Un x2 -> x2 <= xx0:RH1:EUn (sequence_lb Un pr2) x0x1:natH2:x0 = sequence_lb Un pr2 x1Un x1 <= xexists x1; reflexivity. Qed.Un:nat -> Rpr1:exists m : R, is_upper_bound (EUn Un) mpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn Un x2 -> x2 <= xx0:RH1:EUn (sequence_lb Un pr2) x0x1:natH2:x0 = sequence_lb Un pr2 x1EUn Un (Un x1)forall (Un : nat -> R) (pr1 : has_ub Un), has_lb Un -> has_lb (sequence_ub Un pr1)forall (Un : nat -> R) (pr1 : has_ub Un), has_lb Un -> has_lb (sequence_ub Un pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb Unhas_lb (sequence_ub Un pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nhas_lb (sequence_ub Un pr1)Un:nat -> Rpr1:has_ub Unpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nbound (EUn (opp_seq (sequence_ub Un pr1)))Un:nat -> Rpr1:has_ub Unpr2:has_lb UnH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nexists m : R, is_upper_bound (EUn (opp_seq (sequence_ub Un pr1))) mUn:nat -> Rpr1:has_ub Unpr2:bound (EUn (opp_seq Un))H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nexists m : R, is_upper_bound (EUn (opp_seq (sequence_ub Un pr1))) mUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nexists m : R, is_upper_bound (EUn (opp_seq (sequence_ub Un pr1))) mUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:is_upper_bound (EUn (opp_seq Un)) xexists m : R, is_upper_bound (EUn (opp_seq (sequence_ub Un pr1))) mUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:is_upper_bound (EUn (opp_seq Un)) xis_upper_bound (EUn (opp_seq (sequence_ub Un pr1))) xUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:is_upper_bound (EUn (opp_seq Un)) xforall x0 : R, EUn (opp_seq (sequence_ub Un pr1)) x0 -> x0 <= xUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:is_upper_bound (EUn (opp_seq Un)) xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x0 <= xUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x1 : R, EUn (opp_seq Un) x1 -> x1 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x0 <= xUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x1:natH2:x0 = opp_seq (sequence_ub Un pr1) x1x0 <= xUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x1:natH2:x0 = opp_seq (sequence_ub Un pr1) x1opp_seq (sequence_ub Un pr1) x1 <= xUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x1:natH2:x0 = opp_seq (sequence_ub Un pr1) x1opp_seq (sequence_ub Un pr1) x1 <= opp_seq Un x1Un:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x1:natH2:x0 = opp_seq (sequence_ub Un pr1) x1opp_seq Un x1 <= xUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x1:natH2:x0 = opp_seq (sequence_ub Un pr1) x1H3:sequence_lb Un pr2 x1 <= Un x1 <= sequence_ub Un pr1 x1H4:sequence_lb Un pr2 x1 <= Un x1H5:Un x1 <= sequence_ub Un pr1 x1opp_seq (sequence_ub Un pr1) x1 <= opp_seq Un x1Un:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x1:natH2:x0 = opp_seq (sequence_ub Un pr1) x1opp_seq Un x1 <= xUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x1:natH2:x0 = opp_seq (sequence_ub Un pr1) x1H3:sequence_lb Un pr2 x1 <= Un x1 <= sequence_ub Un pr1 x1H4:sequence_lb Un pr2 x1 <= Un x1H5:Un x1 <= sequence_ub Un pr1 x1Un x1 <= sequence_ub Un pr1 x1Un:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x1:natH2:x0 = opp_seq (sequence_ub Un pr1) x1opp_seq Un x1 <= xUn:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x1:natH2:x0 = opp_seq (sequence_ub Un pr1) x1opp_seq Un x1 <= xexists x1; reflexivity. Qed. (**********)Un:nat -> Rpr1:has_ub Unpr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) mH:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 nx:RH0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= xx0:RH1:EUn (opp_seq (sequence_ub Un pr1)) x0x1:natH2:x0 = opp_seq (sequence_ub Un pr1) x1EUn (opp_seq Un) (opp_seq Un x1)forall Un : nat -> R, Cauchy_crit Un -> has_ub Unforall Un : nat -> R, Cauchy_crit Un -> has_ub UnUn:nat -> RH:Cauchy_crit Unhas_ub UnUn:nat -> RH:Cauchy_crit Unbound (EUn Un)assumption. Qed. (**********)Un:nat -> RH:Cauchy_crit UnCauchy_crit Unforall Un : nat -> R, Cauchy_crit Un -> Cauchy_crit (opp_seq Un)forall Un : nat -> R, Cauchy_crit Un -> Cauchy_crit (opp_seq Un)Un:nat -> RCauchy_crit Un -> Cauchy_crit (opp_seq Un)Un:nat -> R(forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (opp_seq Un n) (opp_seq Un m) < epsUn:nat -> R(forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (Un n - Un m) < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (opp_seq Un n - opp_seq Un m) < epsUn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (Un n - Un m) < eps0eps:RH0:eps > 0exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (opp_seq Un n - opp_seq Un m) < epsUn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (Un n - Un m) < eps0eps:RH0:eps > 0x:natH1:forall n m : nat, (n >= x)%nat -> (m >= x)%nat -> Rabs (Un n - Un m) < epsexists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (opp_seq Un n - opp_seq Un m) < epsUn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> Rabs (Un n0 - Un m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> Rabs (Un n0 - Un m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natRabs (opp_seq Un n - opp_seq Un m) < epsUn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> Rabs (Un n0 - Un m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> Rabs (Un n0 - Un m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natRabs (- Un n - - Un m) < epsreplace (- (- Un n - - Un m)) with (Un n - Un m); [ apply H1; assumption | ring ]. Qed. (**********)Un:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> Rabs (Un n0 - Un m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> Rabs (Un n0 - Un m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natRabs (- (- Un n - - Un m)) < epsforall Un : nat -> R, Cauchy_crit Un -> has_lb Unforall Un : nat -> R, Cauchy_crit Un -> has_lb UnUn:nat -> RH:Cauchy_crit Unhas_lb UnUn:nat -> RH:Cauchy_crit Unbound (EUn (opp_seq Un))Un:nat -> RH:Cauchy_crit UnH0:Cauchy_crit (opp_seq Un)bound (EUn (opp_seq Un))assumption. Qed. (**********)Un:nat -> RH:Cauchy_crit UnH0:Cauchy_crit (opp_seq Un)Cauchy_crit (opp_seq Un)forall (Un : nat -> R) (pr : Cauchy_crit Un), {l : R | Un_cv (sequence_ub Un (cauchy_maj Un pr)) l}forall (Un : nat -> R) (pr : Cauchy_crit Un), {l : R | Un_cv (sequence_ub Un (cauchy_maj Un pr)) l}Un:nat -> Rpr:Cauchy_crit Un{l : R | Un_cv (sequence_ub Un (cauchy_maj Un pr)) l}Un:nat -> Rpr:Cauchy_crit UnUn_decreasing (sequence_ub Un (cauchy_maj Un pr))Un:nat -> Rpr:Cauchy_crit Unhas_lb (sequence_ub Un (cauchy_maj Un pr))Un:nat -> Rpr:Cauchy_crit Unhas_lb (sequence_ub Un (cauchy_maj Un pr))Un:nat -> Rpr:Cauchy_crit Unhas_lb Unassumption. Qed. (**********)Un:nat -> Rpr:Cauchy_crit UnCauchy_crit Unforall (Un : nat -> R) (pr : Cauchy_crit Un), {l : R | Un_cv (sequence_lb Un (cauchy_min Un pr)) l}forall (Un : nat -> R) (pr : Cauchy_crit Un), {l : R | Un_cv (sequence_lb Un (cauchy_min Un pr)) l}Un:nat -> Rpr:Cauchy_crit Un{l : R | Un_cv (sequence_lb Un (cauchy_min Un pr)) l}Un:nat -> Rpr:Cauchy_crit UnUn_growing (sequence_lb Un (cauchy_min Un pr))Un:nat -> Rpr:Cauchy_crit Unhas_ub (sequence_lb Un (cauchy_min Un pr))Un:nat -> Rpr:Cauchy_crit Unhas_ub (sequence_lb Un (cauchy_min Un pr))Un:nat -> Rpr:Cauchy_crit Unhas_ub Unassumption. Qed.Un:nat -> Rpr:Cauchy_crit UnCauchy_crit Unforall x y : R, (forall eps : R, 0 < eps -> Rabs (x - y) < eps) -> x = yforall x y : R, (forall eps : R, 0 < eps -> Rabs (x - y) < eps) -> x = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < y0 < y - x -> x = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < y0 < y - xx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < yH0:0 < y - xx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < y0 < y - xx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < yH0:0 < y - xH1:Rabs (x - y) < y - xx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < y0 < y - xx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < yH0:0 < y - xH1:Rabs (- (x - y)) < y - xx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < y0 < y - xx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < yH0:0 < y - xH1:Rabs (y - x) < y - xH2:- (x - y) = y - xx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < y0 < y - xx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < yH0:0 < y - xH1:y - x < y - xH2:- (x - y) = y - xx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < yH0:0 < y - xH1:Rabs (y - x) < y - xH2:- (x - y) = y - xy - x >= 0x, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < y0 < y - xx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < yH0:0 < y - xH1:Rabs (y - x) < y - xH2:- (x - y) = y - xy - x >= 0x, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < y0 < y - xx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < y0 < y - xx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHlt:x < yx + 0 < x + (y - x)x, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHeq:x = yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > y0 < x - y -> x = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > y0 < x - yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yH0:0 < x - yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > y0 < x - yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yH0:0 < x - yH1:Rabs (x - y) < x - yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > y0 < x - yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yH0:0 < x - yH1:x - y < x - yx = yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yH0:0 < x - yH1:Rabs (x - y) < x - yx - y >= 0x, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > y0 < x - yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yH0:0 < x - yH1:Rabs (x - y) < x - yx - y >= 0x, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > y0 < x - yx, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > y0 < x - yrewrite Rplus_0_r; replace (y + (x - y)) with x; [ assumption | ring ]. Qed.x, y:RH:forall eps : R, 0 < eps -> Rabs (x - y) < epsHgt:x > yy + 0 < y + (x - y)forall r1 r2 : R, ~ r1 < r2 -> r1 >= r2forall r1 r2 : R, ~ r1 < r2 -> r1 >= r2tauto. Qed. (**********)r1, r2:Rr1 < r2 \/ r1 = r2 \/ r1 > r2 -> ~ r1 < r2 -> r1 > r2 \/ r1 = r2forall (Un : nat -> R) (pr : has_ub Un) (eps : R), 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsforall (Un : nat -> R) (pr : has_ub Un) (eps : R), 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub Unforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> Rforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natforall n : nat, Vn n = Un (In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVn 0%nat = Un (In 0%nat)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)Vn (S n) = Un (In (S n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)Vn (S n) = Un (In (S n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)(if Rle_lt_dec (Vn n) (Un (S n)) then Un (S n) else Vn n) = Un (if Rle_lt_dec (if Rle_lt_dec (Vn n) (Un (S n)) then Un (S n) else Vn n) (Un (S n)) then S n else In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1:Vn n <= Un (S n)Un (S n) = Un (if Rle_lt_dec (Un (S n)) (Un (S n)) then S n else In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1:Un (S n) < Vn nVn n = Un (if Rle_lt_dec (Vn n) (Un (S n)) then S n else In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1:Vn n <= Un (S n)H2:Un (S n) <= Un (S n)Un (S n) = Un (S n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1:Vn n <= Un (S n)H2:Un (S n) < Un (S n)Un (S n) = Un (In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1:Un (S n) < Vn nVn n = Un (if Rle_lt_dec (Vn n) (Un (S n)) then S n else In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1:Vn n <= Un (S n)H2:Un (S n) < Un (S n)Un (S n) = Un (In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1:Un (S n) < Vn nVn n = Un (if Rle_lt_dec (Vn n) (Un (S n)) then S n else In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1:Un (S n) < Vn nVn n = Un (if Rle_lt_dec (Vn n) (Un (S n)) then S n else In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1:Un (S n) < Vn nH2:Vn n <= Un (S n)Vn n = Un (S n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1, H2:Un (S n) < Vn nVn n = Un (In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natn:natIHn:Vn n = Un (In n)H1, H2:Un (S n) < Vn nVn n = Un (In n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)has_ub VnUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rub:RHub:is_upper_bound (EUn Un) ubVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)has_ub VnUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rub:RHub:is_upper_bound (EUn Un) ubVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)is_upper_bound (EUn Vn) ubUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rub:RHub:is_upper_bound (EUn Un) ubVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)x:Rn:natHn:x = Vn nx <= ubUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rub:RHub:is_upper_bound (EUn Un) ubVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)x:Rn:natHn:x = Vn nUn (In n) <= ubUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rub:RHub:is_upper_bound (EUn Un) ubVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)x:Rn:natHn:x = Vn nEUn Un (Un (In n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnUn_growing VnUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natVn n <= Vn (S n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnVn 0%nat <= Vn 1%natUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)Vn (S n) <= Vn (S (S n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnUn 0%nat <= (if Rle_lt_dec (Un 0%nat) (Un 1%nat) then Un 1%nat else Un 0%nat)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)Vn (S n) <= Vn (S (S n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnH:Un 0%nat <= Un 1%natUn 0%nat <= Un 1%natUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnUn 0%nat <= Un 0%natUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)Vn (S n) <= Vn (S (S n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnUn 0%nat <= Un 0%natUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)Vn (S n) <= Vn (S (S n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)Vn (S n) <= Vn (S (S n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)(if Rle_lt_dec (Vn n) (Un (S n)) then Un (S n) else Vn n) <= (if Rle_lt_dec (if Rle_lt_dec (Vn n) (Un (S n)) then Un (S n) else Vn n) (Un (S (S n))) then Un (S (S n)) else if Rle_lt_dec (Vn n) (Un (S n)) then Un (S n) else Vn n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Vn n <= Un (S n)Un (S n) <= (if Rle_lt_dec (Un (S n)) (Un (S (S n))) then Un (S (S n)) else Un (S n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Un (S n) < Vn nVn n <= (if Rle_lt_dec (Vn n) (Un (S (S n))) then Un (S (S n)) else Vn n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Vn n <= Un (S n)H2:Un (S n) <= Un (S (S n))Un (S n) <= Un (S (S n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Vn n <= Un (S n)H2:Un (S (S n)) < Un (S n)Un (S n) <= Un (S n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Un (S n) < Vn nVn n <= (if Rle_lt_dec (Vn n) (Un (S (S n))) then Un (S (S n)) else Vn n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Vn n <= Un (S n)H2:Un (S (S n)) < Un (S n)Un (S n) <= Un (S n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Un (S n) < Vn nVn n <= (if Rle_lt_dec (Vn n) (Un (S (S n))) then Un (S (S n)) else Vn n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Un (S n) < Vn nVn n <= (if Rle_lt_dec (Vn n) (Un (S (S n))) then Un (S (S n)) else Vn n)Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Un (S n) < Vn nH2:Vn n <= Un (S (S n))Vn n <= Un (S (S n))Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Un (S n) < Vn nH2:Un (S (S n)) < Vn nVn n <= Vn nUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub Vnn:natIHn:Vn n <= Vn (S n)H1:Un (S n) < Vn nH2:Un (S (S n)) < Vn nVn n <= Vn nUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) lforall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) lforall eps : R, 0 < eps -> exists k : nat, Rabs ((let (a, _) := ub_to_lub Un pr in a) - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'forall eps : R, 0 < eps -> exists k : nat, Rabs (l' - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'forall eps : R, 0 < eps -> exists k : nat, Rabs (l - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l = l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'eps:RHeps:0 < epsexists k : nat, Rabs (l - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l = l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'eps:RHeps:0 < epsn:natHn:forall n0 : nat, (n0 >= n)%nat -> R_dist (Vn n0) l < epsexists k : nat, Rabs (l - Un k) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l = l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'eps:RHeps:0 < epsn:natHn:forall n0 : nat, (n0 >= n)%nat -> R_dist (Vn n0) l < epsRabs (l - Un (In n)) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l = l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'eps:RHeps:0 < epsn:natHn:forall n0 : nat, (n0 >= n)%nat -> R_dist (Vn n0) l < epsRabs (l - Vn n) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l = l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'eps:RHeps:0 < epsn:natHn:forall n0 : nat, (n0 >= n)%nat -> R_dist (Vn n0) l < epsRabs (Vn n - l) < epsUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l = l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'eps:RHeps:0 < epsn:natHn:forall n0 : nat, (n0 >= n)%nat -> R_dist (Vn n0) l < eps(n >= n)%natUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l = l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l = l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l <= l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l' <= lUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'is_upper_bound (EUn Vn) l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l' <= lUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Vn kn <= l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l' <= lUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Vn kUn (In k) <= l'Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l' <= lUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Vn kEUn Un (Un (In k))Un:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l' <= lUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'l' <= lUn:nat -> Rpr:has_ub UnVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RIn:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> natVUI:forall n : nat, Vn n = Un (In n)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'is_upper_bound (EUn Un) lUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kn <= lUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kUn k <= lUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kUn k <= Vn kUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kVn k <= lUn:nat -> RVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> Rk:natUn k <= Vn kUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kVn k <= lUn:nat -> RVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> RUn 0%nat <= Vn 0%natUn:nat -> RVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> Rk:natIHk:Un k <= Vn kUn (S k) <= Vn (S k)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kVn k <= lUn:nat -> RVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> Rk:natIHk:Un k <= Vn kUn (S k) <= Vn (S k)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kVn k <= lUn:nat -> RVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> Rk:natIHk:Un k <= Vn kUn (S k) <= (if Rle_lt_dec (Vn k) (Un (S k)) then Un (S k) else Vn k)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kVn k <= lUn:nat -> RVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> Rk:natIHk:Un k <= Vn kH:Vn k <= Un (S k)Un (S k) <= Un (S k)Un:nat -> RVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> Rk:natIHk:Un k <= Vn kH:Un (S k) < Vn kUn (S k) <= Vn kUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kVn k <= lUn:nat -> RVn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> Rk:natIHk:Un k <= Vn kH:Un (S k) < Vn kUn (S k) <= Vn kUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kVn k <= lUn:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kVn k <= lnow exists k. Qed. (**********)Un:nat -> Rpr:has_ub UnVn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> RIn:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> natVUI:forall n0 : nat, Vn n0 = Un (In n0)HubV:has_ub VnHgrV:Un_growing Vnl:RHl:is_lub (EUn Vn) ll':RHl':is_lub (EUn Un) l'n:Rk:natHk:n = Un kEUn Vn (Vn k)forall (Un : nat -> R) (pr : has_lb Un) (eps : R), 0 < eps -> exists k : nat, Rabs (glb Un pr - Un k) < epsforall (Un : nat -> R) (pr : has_lb Un) (eps : R), 0 < eps -> exists k : nat, Rabs (glb Un pr - Un k) < epsUn:nat -> Rpr:has_lb Unforall eps : R, 0 < eps -> exists k : nat, Rabs (glb Un pr - Un k) < epsUn:nat -> Rpr:has_lb Unforall eps : R, 0 < eps -> exists k : nat, Rabs ((let (a, _) := lb_to_glb Un pr in - a) - Un k) < epsUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbforall eps : R, 0 < eps -> exists k : nat, Rabs (- lb - Un k) < epsUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsexists k : nat, Rabs (- lb - Un k) < epsUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsexists k : nat, Rabs (- lb - Un k) < epsUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsRabs (- lb - Un n) < epsUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsRabs (- lb + - Un n) < epsUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsRabs (lb + Un n) < epsUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsRabs (lub (opp_seq Un) pr + Un n) < epsUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epslub (opp_seq Un) pr = lbUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epslub (opp_seq Un) pr = lbUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps(let (a, _) := ub_to_lub (opp_seq Un) pr in a) = lbUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsub:RHub:is_lub (EUn (opp_seq Un)) ubub = lbUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsub:RHub:is_lub (EUn (opp_seq Un)) ubub <= lbUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsub:RHub:is_lub (EUn (opp_seq Un)) ublb <= ubUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsub:RHub:is_lub (EUn (opp_seq Un)) ubis_upper_bound (EUn (opp_seq Un)) lbUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsub:RHub:is_lub (EUn (opp_seq Un)) ublb <= ubUn:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsub:RHub:is_lub (EUn (opp_seq Un)) ublb <= ubapply Hub. Qed.Un:nat -> Rpr:has_lb Unlb:RHlb:is_lub (EUn (opp_seq Un)) lbeps:RHeps:0 < epsn:natHn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < epsub:RHub:is_lub (EUn (opp_seq Un)) ubis_upper_bound (EUn (opp_seq Un)) ub
Unicity of limit for convergent sequences
forall (Un : nat -> R) (l1 l2 : R), Un_cv Un l1 -> Un_cv Un l2 -> l1 = l2forall (Un : nat -> R) (l1 l2 : R), Un_cv Un l1 -> Un_cv Un l2 -> l1 = l2Un:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l1) < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l2) < epsl1 = l2Un:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l1) < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l2) < epsforall eps : R, 0 < eps -> Rabs (l1 - l2) < epsUn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l2) < eps0eps:RH1:0 < epsH2:0 < eps / 2Rabs (l1 - l2) < epsUn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l2) < eps0eps:RH1:0 < epsH2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2Rabs (l1 - l2) < epsUn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l2) < eps0eps:RH1:0 < epsH2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2x0:natH4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2Rabs (l1 - l2) < epsUn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0eps:RH1:0 < epsH2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2x0:natH4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2N:=Nat.max x x0:natRabs (l1 - l2) < epsUn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0eps:RH1:0 < epsH2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2x0:natH4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2N:=Nat.max x x0:natRabs (l1 - l2) <= Rabs (l1 - Un N) + Rabs (Un N - l2)Un:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0eps:RH1:0 < epsH2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2x0:natH4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2N:=Nat.max x x0:natRabs (l1 - Un N) + Rabs (Un N - l2) < epsUn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0eps:RH1:0 < epsH2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2x0:natH4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2N:=Nat.max x x0:natRabs (l1 - Un N) + Rabs (Un N - l2) < epsUn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0eps:RH1:0 < epsH2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2x0:natH4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2N:=Nat.max x x0:natRabs (l1 - Un N) < eps / 2Un:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0eps:RH1:0 < epsH2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2x0:natH4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2N:=Nat.max x x0:natRabs (Un N - l2) < eps / 2apply H4; unfold ge, N; apply le_max_r. Qed. (**********)Un:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0eps:RH1:0 < epsH2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2x0:natH4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2N:=Nat.max x x0:natRabs (Un N - l2) < eps / 2forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i + Bn i) (l1 + l2)forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i + Bn i) (l1 + l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0eps:RH1:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n + Bn n - (l1 + l2)) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n + Bn n - (l1 + l2)) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (An n - l1) < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n + Bn n - (l1 + l2)) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (An n - l1) < eps / 2x0:natH4:forall n : nat, (n >= x0)%nat -> Rabs (Bn n - l2) < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n + Bn n - (l1 + l2)) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (An n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Bn n - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n : nat, (n >= x)%nat -> Rabs (An n - l1) < eps / 2x0:natH4:forall n : nat, (n >= x0)%nat -> Rabs (Bn n - l2) < eps / 2N:=Nat.max x x0:natexists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (An n + Bn n - (l1 + l2)) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2x0:natH4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2N:=Nat.max x x0:natn:natH5:(n >= N)%natRabs (An n + Bn n - (l1 + l2)) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2x0:natH4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2N:=Nat.max x x0:natn:natH5:(n >= N)%natRabs (An n - l1 + (Bn n - l2)) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2x0:natH4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2N:=Nat.max x x0:natn:natH5:(n >= N)%natRabs (An n - l1 + (Bn n - l2)) <= Rabs (An n - l1) + Rabs (Bn n - l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2x0:natH4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2N:=Nat.max x x0:natn:natH5:(n >= N)%natRabs (An n - l1) + Rabs (Bn n - l2) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2x0:natH4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2N:=Nat.max x x0:natn:natH5:(n >= N)%natRabs (An n - l1) + Rabs (Bn n - l2) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2x0:natH4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2N:=Nat.max x x0:natn:natH5:(n >= N)%natRabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2x0:natH4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2N:=Nat.max x x0:natn:natH5:(n >= N)%natRabs (Bn n - l2) < eps / 2apply H4; unfold ge; apply le_trans with N; [ unfold N; apply le_max_r | assumption ]. Qed. (**********)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0eps:RH1:eps > 0H2:0 < eps / 2x:natH3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2x0:natH4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2N:=Nat.max x x0:natn:natH5:(n >= N)%natRabs (Bn n - l2) < eps / 2forall (Un : nat -> R) (l : R), Un_cv Un l -> Un_cv (fun i : nat => Rabs (Un i)) (Rabs l)forall (Un : nat -> R) (l : R), Un_cv Un l -> Un_cv (fun i : nat => Rabs (Un i)) (Rabs l)Un:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l) < eps0eps:RH0:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs (Un n) - Rabs l) < epsUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l) < eps0eps:RH0:eps > 0x:natH1:forall n : nat, (n >= x)%nat -> Rabs (Un n - l) < epsexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs (Un n) - Rabs l) < epsUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < eps0eps:RH0:eps > 0x:natH1:forall n0 : nat, (n0 >= x)%nat -> Rabs (Un n0 - l) < epsn:natH2:(n >= x)%natRabs (Rabs (Un n) - Rabs l) < epsUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < eps0eps:RH0:eps > 0x:natH1:forall n0 : nat, (n0 >= x)%nat -> Rabs (Un n0 - l) < epsn:natH2:(n >= x)%natRabs (Rabs (Un n) - Rabs l) <= Rabs (Un n - l)Un:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < eps0eps:RH0:eps > 0x:natH1:forall n0 : nat, (n0 >= x)%nat -> Rabs (Un n0 - l) < epsn:natH2:(n >= x)%natRabs (Un n - l) < epsapply H1; assumption. Qed. (**********)Un:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < eps0eps:RH0:eps > 0x:natH1:forall n0 : nat, (n0 >= x)%nat -> Rabs (Un n0 - l) < epsn:natH2:(n >= x)%natRabs (Un n - l) < epsforall Un : nat -> R, {l : R | Un_cv Un l} -> Cauchy_crit Unforall Un : nat -> R, {l : R | Un_cv Un l} -> Cauchy_crit UnUn:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xCauchy_crit UnUn:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xeps:RH:eps > 0exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < epsUn:nat -> RX:{l : R | Un_cv Un l}x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - x) < eps0eps:RH:eps > 0exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < epsUn:nat -> RX:{l : R | Un_cv Un l}x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - x) < eps0eps:RH:eps > 0H0:0 < eps / 2exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < epsUn:nat -> RX:{l : R | Un_cv Un l}x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - x) < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n : nat, (n >= x0)%nat -> Rabs (Un n - x) < eps / 2exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < epsUn:nat -> RX:{l : R | Un_cv Un l}x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (Un n) (Un m) < epsUn:nat -> RX:{l : R | Un_cv Un l}x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natRabs (Un n - Un m) <= Rabs (Un n - x) + Rabs (x - Un m)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natRabs (Un n - x) + Rabs (x - Un m) < epsUn:nat -> RX:{l : R | Un_cv Un l}x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natRabs (Un n - x) + Rabs (x - Un m) < epsUn:nat -> RX:{l : R | Un_cv Un l}x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natRabs (Un n - x) < eps / 2Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natRabs (x - Un m) < eps / 2rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H1; assumption. Qed. (**********)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natRabs (x - Un m) < eps / 2forall Un : nat -> R, {l : R | Un_cv Un l} -> exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)forall Un : nat -> R, {l : R | Un_cv Un l} -> exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xexists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l} -> exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 < x0 + 1 /\ (forall n : nat, Rabs (Un n) <= x0 + 1)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0 -> 0 < x0 + 1 /\ (forall n : nat, Rabs (Un n) <= x0 + 1)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0H2:0 <= x00 < x0 + 1 /\ (forall n : nat, Rabs (Un n) <= x0 + 1)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0H2:0 <= x00 < x0 + 1Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0H2:0 <= x0forall n : nat, Rabs (Un n) <= x0 + 1Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0H2:0 <= x0forall n : nat, Rabs (Un n) <= x0 + 1Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0H2:0 <= x0n:natRabs (Un n) <= x0 + 1Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0H2:0 <= x0n:natRabs (Un n) <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0H2:0 <= x0n:natx0 <= x0 + 1Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:forall x1 : R, EUn (fun k : nat => Rabs (Un k)) x1 -> x1 <= x0H2:0 <= x0n:natRabs (Un n) <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0H2:0 <= x0n:natx0 <= x0 + 1Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:forall x1 : R, EUn (fun k : nat => Rabs (Un k)) x1 -> x1 <= x0H2:0 <= x0n:natEUn (fun k : nat => Rabs (Un k)) (Rabs (Un n))Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0H2:0 <= x0n:natx0 <= x0 + 1Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0H2:0 <= x0n:natx0 <= x0 + 1Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x00 <= Rabs (Un 0%nat)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0Rabs (Un 0%nat) <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0Rabs (Un 0%nat) <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:forall x1 : R, EUn (fun k : nat => Rabs (Un k)) x1 -> x1 <= x0Rabs (Un 0%nat) <= x0Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xX0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}H:Cauchy_crit (fun k : nat => Rabs (Un k))H0:bound (EUn (fun k : nat => Rabs (Un k)))x0:RH1:forall x1 : R, EUn (fun k : nat => Rabs (Un k)) x1 -> x1 <= x0EUn (fun k : nat => Rabs (Un k)) (Rabs (Un 0%nat))Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un x{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}apply cv_cvabs; assumption. Qed. (**********)Un:nat -> RX:{l : R | Un_cv Un l}x:Rp:Un_cv Un xUn_cv (fun k : nat => Rabs (Un k)) (Rabs x)forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i * Bn i) (l1 * l2)forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i * Bn i) (l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2Un_cv (fun i : nat => An i * Bn i) (l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l} -> Un_cv (fun i : nat => An i * Bn i) (l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}Un_cv (fun i : nat => An i * Bn i) (l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)Un_cv (fun i : nat => An i * Bn i) (l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)Un_cv (fun i : nat => An i * Bn i) (l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= MUn_cv (fun i : nat => An i * Bn i) (l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n : nat, (n >= x)%nat -> Rabs (Bn n - l2) < eps / (2 * M)exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n * Bn n - l1 * l2) <= Rabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) + Rabs (An n * l2 - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) + 0 < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) <= M * Rabs (Bn n - l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM * Rabs (Bn n - l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (Bn n - l2) * Rabs (An n) <= Rabs (Bn n - l2) * MAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM * Rabs (Bn n - l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 <= Rabs (Bn n - l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) <= MAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM * Rabs (Bn n - l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) <= MAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM * Rabs (Bn n - l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM * Rabs (Bn n - l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 < / MAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat/ M * (M * Rabs (Bn n - l2)) < / M * epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat/ M * (M * Rabs (Bn n - l2)) < / M * epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat1 * Rabs (Bn n - l2) < / M * epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (Bn n - l2) < eps * / MAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (Bn n - l2) < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nateps / (2 * M) < eps * / MAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nateps / (2 * M) < eps * / MAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nateps * (/ 2 * / M) < eps * / MAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 < 2An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 * (eps * (/ 2 * / M)) < 2 * (eps * / M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 * (eps * (/ 2 * / M)) < 2 * (eps * / M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 * / 2 * (eps * / M) < 2 * (eps * / M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat1 * (eps * / M) < 2 * (eps * / M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nateps * / M < eps * / M + eps * / MAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nateps * / M + 0 < eps * / M + eps * / MAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natM <> 0An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%nat0 = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 = 0x:natH8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)n:natH9:(n >= x)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * (Bn n - l2))An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n : nat, (n >= N1)%nat -> Rabs (An n - l1) < eps / (2 * Rabs l2)exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n : nat, (n >= N1)%nat -> Rabs (An n - l1) < eps / (2 * Rabs l2)N2:natH10:forall n : nat, (n >= N2)%nat -> Rabs (Bn n - l2) < eps / (2 * M)exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (An n - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Bn n - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n : nat, (n >= N1)%nat -> Rabs (An n - l1) < eps / (2 * Rabs l2)N2:natH10:forall n : nat, (n >= N2)%nat -> Rabs (Bn n - l2) < eps / (2 * M)N:=Nat.max N1 N2:natexists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n * Bn n - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n * Bn n - l1 * l2) <= Rabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) + Rabs (An n * l2 - l1 * l2) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) + Rabs l2 * Rabs (An n - l1) < epsAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) <= M * Rabs (Bn n - l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM * Rabs (Bn n - l2) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (Bn n - l2) * Rabs (An n) <= Rabs (Bn n - l2) * MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM * Rabs (Bn n - l2) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat0 <= Rabs (Bn n - l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) <= MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM * Rabs (Bn n - l2) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) <= MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM * Rabs (Bn n - l2) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM * Rabs (Bn n - l2) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat0 < / MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat/ M * (M * Rabs (Bn n - l2)) < / M * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat/ M * (M * Rabs (Bn n - l2)) < / M * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat1 * Rabs (Bn n - l2) < / M * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (Bn n - l2) < eps / 2 * / MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (Bn n - l2) < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps / (2 * M) <= eps / 2 * / MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat(n >= N2)%natAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps / (2 * M) <= eps / 2 * / MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat(N2 <= N)%natAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat(N <= n)%natAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps / (2 * M) <= eps / 2 * / MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat(N <= n)%natAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps / (2 * M) <= eps / 2 * / MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps / (2 * M) <= eps / 2 * / MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps * (/ 2 * / M) <= eps * / 2 * / MAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natM <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) < eps / 2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat0 < / Rabs l2An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat/ Rabs l2 * (Rabs l2 * Rabs (An n - l1)) < / Rabs l2 * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat/ Rabs l2 * (Rabs l2 * Rabs (An n - l1)) < / Rabs l2 * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat1 * Rabs (An n - l1) < / Rabs l2 * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n - l1) < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps / (2 * Rabs l2) <= / Rabs l2 * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat(n >= N1)%natAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps / (2 * Rabs l2) <= / Rabs l2 * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat(N1 <= N)%natAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat(N <= n)%natAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps / (2 * Rabs l2) <= / Rabs l2 * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat(N <= n)%natAn, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps / (2 * Rabs l2) <= / Rabs l2 * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps / (2 * Rabs l2) <= / Rabs l2 * (eps / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nateps * (/ 2 * / Rabs l2) = / Rabs l2 * (eps * / 2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%nat2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 <> 0An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)M:RH2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)H3:0 < MH4:forall n0 : nat, Rabs (An n0) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 0H8:0 < eps / (2 * Rabs l2)N1:natH9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)N2:natH10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)N:=Nat.max N1 N2:natn:natH11:(n >= N)%natRabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < eps / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < epsAn, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 0H6:0 < eps / (2 * M)H7:l2 <> 00 < / (2 * Rabs l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2X:{l : R | Un_cv An l}H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)M:RH2:0 < M /\ (forall n : nat, Rabs (An n) <= M)H3:0 < MH4:forall n : nat, Rabs (An n) <= Meps:RH5:eps > 00 < eps / (2 * M)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}exists l1; assumption. Qed.An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2{l : R | Un_cv An l}forall Un : nat -> R, Un_growing Un -> forall m n : nat, (m <= n)%nat -> Un m <= Un nforall Un : nat -> R, Un_growing Un -> forall m n : nat, (m <= n)%nat -> Un m <= Un nUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= n)%natUn m <= Un nUn:nat -> RH:forall n : nat, Un n <= Un (S n)m:natH0:(m <= 0)%natUn m <= Un 0%natUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nUn m <= Un (S n)Un:nat -> RH:forall n : nat, Un n <= Un (S n)H0:(0 <= 0)%natUn 0%nat <= Un 0%natUn:nat -> RH:forall n : nat, Un n <= Un (S n)m:natH0:(S m <= 0)%natHrecm:(m <= 0)%nat -> Un m <= Un 0%natUn (S m) <= Un 0%natUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nUn m <= Un (S n)Un:nat -> RH:forall n : nat, Un n <= Un (S n)m:natH0:(S m <= 0)%natHrecm:(m <= 0)%nat -> Un m <= Un 0%natUn (S m) <= Un 0%natUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nUn m <= Un (S n)Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nUn m <= Un (S n)Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un n(m <= n)%nat \/ m = S n -> Un m <= Un (S n)Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un n(m <= n)%nat \/ m = S nUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nH1:(m <= n)%nat \/ m = S nH2:(m <= n)%natUn m <= Un (S n)Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nH1:(m <= n)%nat \/ m = S nH2:m = S nUn m <= Un (S n)Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un n(m <= n)%nat \/ m = S nUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nH1:(m <= n)%nat \/ m = S nH2:(m <= n)%natUn m <= Un nUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nH1:(m <= n)%nat \/ m = S nH2:(m <= n)%natUn n <= Un (S n)Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nH1:(m <= n)%nat \/ m = S nH2:m = S nUn m <= Un (S n)Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un n(m <= n)%nat \/ m = S nUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nH1:(m <= n)%nat \/ m = S nH2:(m <= n)%natUn n <= Un (S n)Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nH1:(m <= n)%nat \/ m = S nH2:m = S nUn m <= Un (S n)Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un n(m <= n)%nat \/ m = S nUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nH1:(m <= n)%nat \/ m = S nH2:m = S nUn m <= Un (S n)Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un n(m <= n)%nat \/ m = S nUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un n(m <= n)%nat \/ m = S nUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nH1:m = S n(S n <= n)%nat \/ S n = S nUn:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nm0:natH2:(m <= n)%natH1:m0 = n(m <= n)%nat \/ m = S nleft; assumption. Qed.Un:nat -> RH:forall n0 : nat, Un n0 <= Un (S n0)m, n:natH0:(m <= S n)%natHrecn:(m <= n)%nat -> Un m <= Un nm0:natH2:(m <= n)%natH1:m0 = n(m <= n)%nat \/ m = S nforall (An : nat -> R) (k : R), 0 <= k < 1 -> Un_cv (fun n : nat => Rabs (An (S n) / An n)) k -> exists k0 : R, k < k0 < 1 /\ (exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k0)forall (An : nat -> R) (k : R), 0 <= k < 1 -> Un_cv (fun n : nat => Rabs (An (S n) / An n)) k -> exists k0 : R, k < k0 < 1 /\ (exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k0)An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kk < k + (1 - k) / 2 < 1 /\ (exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2)An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kk < k + (1 - k) / 2 < 1An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kk < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kk + (1 - k) / 2 < 1An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k0 < (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kk + (1 - k) / 2 < 1An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k0 < 1 - kAn:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k0 < / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kk + (1 - k) / 2 < 1An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k0 < / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kk + (1 - k) / 2 < 1An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kk + (1 - k) / 2 < 1An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k0 < 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k2 * (k + (1 - k) / 2) < 2 * 1An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k2 * (k + (1 - k) / 2) < 2 * 1An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k1 + k < 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kH1:0 <= kH2:k < 11 + k < 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) kexists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < (1 - k) / 2 -> exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < epsH1:0 < (1 - k) / 2x:natH2:forall n : nat, (n >= x)%nat -> R_dist (Rabs (An (S n) / An n)) k < (1 - k) / 2exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < epsH1:0 < (1 - k) / 2x:natH2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2n:natH3:(x <= n)%natRabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < epsH1:0 < (1 - k) / 2x:natH2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2n:natH3:(x <= n)%natH4:R_dist (Rabs (An (S n) / An n)) k < (1 - k) / 2Rabs (An (S n) / An n) < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < epsH1:0 < (1 - k) / 2x:natH2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2n:natH3:(x <= n)%natH4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2Rabs (Rabs (An (S n) / An n) - k + k) <= Rabs (Rabs (An (S n) / An n) - k) + Rabs kAn:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < epsH1:0 < (1 - k) / 2x:natH2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2n:natH3:(x <= n)%natH4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2Rabs (Rabs (An (S n) / An n) - k) + Rabs k < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < epsH1:0 < (1 - k) / 2x:natH2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2n:natH3:(x <= n)%natH4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2Rabs (Rabs (An (S n) / An n) - k) + Rabs k < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < epsH1:0 < (1 - k) / 2x:natH2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2n:natH3:(x <= n)%natH4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2Rabs (Rabs (An (S n) / An n) - k) + k < k + (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < epsH1:0 < (1 - k) / 2x:natH2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2n:natH3:(x <= n)%natH4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2k >= 0An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < epsH1:0 < (1 - k) / 2x:natH2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2n:natH3:(x <= n)%natH4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2k >= 0An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < (1 - k) / 2An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < 1 - kAn:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < / 2apply Rinv_0_lt_compat; prove_sup0. Qed. (**********)An:nat -> Rk:RH:0 <= k < 1H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps0 < / 2forall (Un : nat -> R) (l : R), Un_growing Un -> Un_cv Un l -> forall n : nat, Un n <= lforall (Un : nat -> R) (l : R), Un_growing Un -> Un_cv Un l -> forall n : nat, Un n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHlt:Un n < lUn n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHeq:Un n = lUn n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > lUn n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHeq:Un n = lUn n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > lUn n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > lUn n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - l -> Un n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lUn n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lUn n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn n <= lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn n - l <= Un N - l -> Un n <= lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn n - l <= Un N - lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natH3:Un n - l <= Un N - lUn N - l < Un n - l -> Un n <= lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natH3:Un n - l <= Un N - lUn N - l < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn n - l <= Un N - lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natH3:Un n - l <= Un N - lUn N - l < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn n - l <= Un N - lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natH3:Un n - l <= Un N - lUn N - l <= Rabs (Un N - l)Un:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natH3:Un n - l <= Un N - lRabs (Un N - l) < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn n - l <= Un N - lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natH3:Un n - l <= Un N - lRabs (Un N - l) < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn n - l <= Un N - lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natH3:Un n - l <= Un N - l(N >= N1)%natUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn n - l <= Un N - lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn n - l <= Un N - lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn n <= Un NUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:natUn_growing UnUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:nat(n <= N)%natUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < epsn:natHgt:Un n > lH1:0 < Un n - lN1:natH2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - lN:=Nat.max n N1:nat(n <= N)%natUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > l0 < Un n - lUn:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > ll + 0 < l + (Un n - l)replace (l + (Un n - l)) with (Un n); [ assumption | ring ]. Qed.Un:nat -> Rl:RH:Un_growing UnH0:Un_cv Un ln:natHgt:Un n > ll < l + (Un n - l)
Un->l => (-Un) -> (-l)
forall (An : nat -> R) (l : R), Un_cv An l -> Un_cv (opp_seq An) (- l)forall (An : nat -> R) (l : R), Un_cv An l -> Un_cv (opp_seq An) (- l)An:nat -> Rl:RUn_cv An l -> Un_cv (opp_seq An) (- l)An:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l) < eps0eps:RH0:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (opp_seq An n - - l) < epsAn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l) < eps0eps:RH0:eps > 0x:natH1:forall n : nat, (n >= x)%nat -> Rabs (An n - l) < epsexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (opp_seq An n - - l) < epsAn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (An n0 - l) < eps0eps:RH0:eps > 0x:natH1:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l) < epsn:natH2:(n >= x)%natRabs (opp_seq An n - - l) < epsapply H1; assumption. Qed. (**********)An:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (An n0 - l) < eps0eps:RH0:eps > 0x:natH1:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l) < epsn:natH2:(n >= x)%natRabs (An n - l) < epsforall (Un : nat -> R) (l : R), Un_decreasing Un -> Un_cv Un l -> forall n : nat, l <= Un nforall (Un : nat -> R) (l : R), Un_decreasing Un -> Un_cv Un l -> forall n : nat, l <= Un nUn:nat -> Rl:RH:Un_decreasing UnH0:Un_cv Un ln:natl <= Un nUn:nat -> Rl:RH:Un_decreasing UnH0:Un_cv Un ln:natH1:Un_growing (opp_seq Un)l <= Un nUn:nat -> Rl:RH:Un_decreasing UnH0:Un_cv Un ln:natH1:Un_growing (opp_seq Un)H2:Un_cv (opp_seq Un) (- l)l <= Un nUn:nat -> Rl:RH:Un_decreasing UnH0:Un_cv Un ln:natH1:Un_growing (opp_seq Un)H2:Un_cv (opp_seq Un) (- l)H3:forall n0 : nat, opp_seq Un n0 <= - ll <= Un nunfold opp_seq in H3; apply H3. Qed. (**********)Un:nat -> Rl:RH:Un_decreasing UnH0:Un_cv Un ln:natH1:Un_growing (opp_seq Un)H2:Un_cv (opp_seq Un) (- l)H3:forall n0 : nat, opp_seq Un n0 <= - l- Un n <= - lforall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i - Bn i) (l1 - l2)forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i - Bn i) (l1 - l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2Un_cv (fun i : nat => An i - Bn i) (l1 - l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2Un_cv (fun i : nat => An i + opp_seq Bn i) (l1 - l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2(fun i : nat => An i + opp_seq Bn i) = (fun i : nat => An i - Bn i)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2Un_cv An l1An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2Un_cv (opp_seq Bn) (- l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2(fun i : nat => An i + opp_seq Bn i) = (fun i : nat => An i - Bn i)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2Un_cv (opp_seq Bn) (- l2)An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2(fun i : nat => An i + opp_seq Bn i) = (fun i : nat => An i - Bn i)unfold Rminus, opp_seq; reflexivity. Qed.An, Bn:nat -> Rl1, l2:RH:Un_cv An l1H0:Un_cv Bn l2(fun i : nat => An i + opp_seq Bn i) = (fun i : nat => An i - Bn i)
Un -> +oo
Definition cv_infty (Un:nat -> R) : Prop :=
forall M:R, exists N : nat, (forall n:nat, (N <= n)%nat -> M < Un n).
Un -> +oo => /Un -> O
forall Un : nat -> R, (forall n : nat, Un n <> 0) -> cv_infty Un -> Un_cv (fun n : nat => / Un n) 0forall Un : nat -> R, (forall n : nat, Un n <> 0) -> cv_infty Un -> Un_cv (fun n : nat => / Un n) 0Un:nat -> RH:forall n : nat, Un n <> 0H0:forall M : R, exists N : nat, forall n : nat, (N <= n)%nat -> M < Un neps:RH1:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ Un n - 0) < epsUn:nat -> RH:forall n : nat, Un n <> 0H0:forall M : R, exists N : nat, forall n : nat, (N <= n)%nat -> M < Un neps:RH1:eps > 0N0:natH2:forall n : nat, (N0 <= n)%nat -> / eps < Un nexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ Un n - 0) < epsUn:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (/ Un n - 0) < epsUn:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nat/ Rabs (Un n) < epsUn:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nat0 < Rabs (Un n)Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (Un n) * / Rabs (Un n) < Rabs (Un n) * epsUn:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (Un n) * / Rabs (Un n) < Rabs (Un n) * epsUn:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nat1 < Rabs (Un n) * epsUn:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (Un n) <> 0Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nat0 < / epsUn:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nat/ eps * 1 < / eps * (Rabs (Un n) * eps)Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (Un n) <> 0Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nat/ eps * 1 < / eps * (Rabs (Un n) * eps)Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (Un n) <> 0Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nat/ eps < Rabs (Un n) * 1Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nateps <> 0Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (Un n) <> 0Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nat/ eps < Un nUn:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natUn n <= Rabs (Un n)Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nateps <> 0Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (Un n) <> 0Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natUn n <= Rabs (Un n)Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nateps <> 0Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (Un n) <> 0Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%nateps <> 0Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (Un n) <> 0apply Rabs_no_R0; apply H. Qed. (**********)Un:nat -> RH:forall n0 : nat, Un n0 <> 0H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0eps:RH1:eps > 0N0:natH2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0n:natH3:(n >= N0)%natRabs (Un n) <> 0forall (Un : nat -> R) (m n : nat), Un_decreasing Un -> (m <= n)%nat -> Un n <= Un mforall (Un : nat -> R) (m n : nat), Un_decreasing Un -> (m <= n)%nat -> Un n <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= n)%natUn n <= Un mUn:nat -> Rm:natH:forall n : nat, Un (S n) <= Un nH0:(m <= 0)%natUn 0%nat <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mUn (S n) <= Un mUn:nat -> RH:forall n : nat, Un (S n) <= Un nH0:(0 <= 0)%natUn 0%nat <= Un 0%natUn:nat -> Rm:natH:forall n : nat, Un (S n) <= Un nH0:(S m <= 0)%natHrecm:(m <= 0)%nat -> Un 0%nat <= Un mUn 0%nat <= Un (S m)Un:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mUn (S n) <= Un mUn:nat -> Rm:natH:forall n : nat, Un (S n) <= Un nH0:(S m <= 0)%natHrecm:(m <= 0)%nat -> Un 0%nat <= Un mUn 0%nat <= Un (S m)Un:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mUn (S n) <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mUn (S n) <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un m(m <= n)%nat \/ m = S n -> Un (S n) <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un m(m <= n)%nat \/ m = S nUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mH1:(m <= n)%nat \/ m = S nH2:(m <= n)%natUn (S n) <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mH1:(m <= n)%nat \/ m = S nH2:m = S nUn (S n) <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un m(m <= n)%nat \/ m = S nUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mH1:(m <= n)%nat \/ m = S nH2:(m <= n)%natUn (S n) <= Un nUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mH1:(m <= n)%nat \/ m = S nH2:(m <= n)%natUn n <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mH1:(m <= n)%nat \/ m = S nH2:m = S nUn (S n) <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un m(m <= n)%nat \/ m = S nUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mH1:(m <= n)%nat \/ m = S nH2:(m <= n)%natUn n <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mH1:(m <= n)%nat \/ m = S nH2:m = S nUn (S n) <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un m(m <= n)%nat \/ m = S nUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un mH1:(m <= n)%nat \/ m = S nH2:m = S nUn (S n) <= Un mUn:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un m(m <= n)%nat \/ m = S ninversion H0; [ right; reflexivity | left; assumption ]. Qed.Un:nat -> Rm, n:natH:forall n0 : nat, Un (S n0) <= Un n0H0:(m <= S n)%natHrecn:(m <= n)%nat -> Un n <= Un m(m <= n)%nat \/ m = S n
|x|^n/n! -> 0
forall x : R, Un_cv (fun n : nat => x ^ n / INR (fact n)) 0forall x : R, Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:R(Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0) -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0x:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x = 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x = 0n:natH2:(n >= 1)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Z -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Rexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - 0) < eps0N:natH6:forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < epsexists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%nat(exists p : nat, (p >= N)%nat /\ n = (M_nat + p)%nat) -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%natexists p : nat, (p >= N)%nat /\ n = (M_nat + p)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%natH8:exists p0 : nat, (p0 >= N)%nat /\ n = (M_nat + p0)%natp:natH9:(p >= N)%nat /\ n = (M_nat + p)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%natexists p : nat, (p >= N)%nat /\ n = (M_nat + p)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%natexists p : nat, (p >= N)%nat /\ n = (M_nat + p)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%nat(n - M_nat >= N)%nat /\ n = (M_nat + (n - M_nat))%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%nat(n - M_nat >= N)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%natn = (M_nat + (n - M_nat))%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%nat(M_nat + N <= n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%nat(M_nat <= n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%natn = (M_nat + (n - M_nat))%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%nat(M_nat <= n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%natn = (M_nat + (n - M_nat))%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%nat(M_nat <= M_nat + N)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%nat(M_nat + N <= n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%natn = (M_nat + (n - M_nat))%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%nat(M_nat + N <= n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%natn = (M_nat + (n - M_nat))%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> RH5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < epsn:natH7:(n >= M_nat + N)%natn = (M_nat + (n - M_nat))%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> Rexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%nat -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%nat(forall n : nat, 0 < Un n) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Un -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Un(forall n : nat, Un (S n) <= Vn n) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Vn n - 0) < eps1exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Vn n - 0) < eps1N1:natH11:forall n : nat, (n >= N1)%nat -> Rabs (Vn n - 0) < eps0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natRabs (Un n - 0) < eps0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%nat(forall n0 : nat, 0 < Vn n0) -> Rabs (Un n - 0) < eps0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natforall n0 : nat, 0 < Vn n0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Rabs (Un n - 0) <= Rabs (Vn (Init.Nat.pred n) - 0)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Rabs (Vn (Init.Nat.pred n) - 0) < eps0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natforall n0 : nat, 0 < Vn n0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Un n - 0 <= Vn (Init.Nat.pred n) - 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Vn (Init.Nat.pred n) - 0 >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Un n - 0 >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Rabs (Vn (Init.Nat.pred n) - 0) < eps0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natforall n0 : nat, 0 < Vn n0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Un (S (Init.Nat.pred n)) <= Vn (Init.Nat.pred (S (Init.Nat.pred n)))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0S (Init.Nat.pred n) = nx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Vn (Init.Nat.pred n) - 0 >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Un n - 0 >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Rabs (Vn (Init.Nat.pred n) - 0) < eps0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natforall n0 : nat, 0 < Vn n0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0S (Init.Nat.pred n) = nx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Vn (Init.Nat.pred n) - 0 >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Un n - 0 >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Rabs (Vn (Init.Nat.pred n) - 0) < eps0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natforall n0 : nat, 0 < Vn n0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Vn (Init.Nat.pred n) - 0 >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Un n - 0 >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Rabs (Vn (Init.Nat.pred n) - 0) < eps0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natforall n0 : nat, 0 < Vn n0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Un n - 0 >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Rabs (Vn (Init.Nat.pred n) - 0) < eps0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natforall n0 : nat, 0 < Vn n0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natH13:forall n0 : nat, 0 < Vn n0Rabs (Vn (Init.Nat.pred n) - 0) < eps0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natforall n0 : nat, 0 < Vn n0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1N1:natH11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0n:natH12:(n >= S N1)%natforall n0 : nat, 0 < Vn n0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nUn_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n)) -> Un_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0 -> Un_cv Vn 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x * (Un 0%nat / INR (S n)) - 0) < eps1x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x * (Un 0%nat / INR (S n)) - 0) < eps1x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps1 / (Rabs x * Un 0%nat)exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Rabs x * (Un 0%nat / INR (S n)) - 0) < eps1x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (Rabs x * Un 0%nat * (/ INR (S n) - 0)) < eps1x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nat0 < / Rabs (Rabs x * Un 0%nat)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nat/ Rabs (Rabs x * Un 0%nat) * (Rabs (Rabs x * Un 0%nat) * Rabs (/ INR (S n) - 0)) < / Rabs (Rabs x * Un 0%nat) * eps1x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs x * Un 0%nat <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nat/ Rabs (Rabs x * Un 0%nat) * (Rabs (Rabs x * Un 0%nat) * Rabs (/ INR (S n) - 0)) < / Rabs (Rabs x * Un 0%nat) * eps1x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs x <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natUn 0%nat <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nat/ Rabs (Rabs x * Un 0%nat) * (Rabs (Rabs x * Un 0%nat) * Rabs (/ INR (S n) - 0)) < / Rabs (Rabs x * Un 0%nat) * eps1x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natUn 0%nat <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nat/ Rabs (Rabs x * Un 0%nat) * (Rabs (Rabs x * Un 0%nat) * Rabs (/ INR (S n) - 0)) < / Rabs (Rabs x * Un 0%nat) * eps1x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nat/ Rabs (Rabs x * Un 0%nat) * (Rabs (Rabs x * Un 0%nat) * Rabs (/ INR (S n) - 0)) < / Rabs (Rabs x * Un 0%nat) * eps1x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nat1 * Rabs (/ INR (S n) - 0) < / Rabs (Rabs x * Un 0%nat) * eps1x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (Rabs x * Un 0%nat) <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (/ INR (S n) - 0) < / Rabs (Rabs x * Un 0%nat) * eps1x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (Rabs x * Un 0%nat) <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (/ INR (S n) - 0) < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nateps1 / (Rabs x * Un 0%nat) = / Rabs (Rabs x * Un 0%nat) * eps1x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (Rabs x * Un 0%nat) <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nateps1 / (Rabs x * Un 0%nat) = / Rabs (Rabs x * Un 0%nat) * eps1x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (Rabs x * Un 0%nat) <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nateps1 * / (Rabs x * Un 0%nat) = / (Rabs x * Un 0%nat) * eps1x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs x * Un 0%nat >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (Rabs x * Un 0%nat) <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs x * Un 0%nat >= 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (Rabs x * Un 0%nat) <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nat0 <= Rabs xx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nat0 <= Un 0%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (Rabs x * Un 0%nat) <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%nat0 <= Un 0%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (Rabs x * Un 0%nat) <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs (Rabs x * Un 0%nat) <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0H10:cv_infty (fun n0 : nat => INR (S n0))H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2eps1:RH12:eps1 > 0H13:0 < eps1 / (Rabs x * Un 0%nat)N:natH14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)n:natH15:(n >= N)%natRabs x * Un 0%nat <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1 / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < eps1x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < / (Rabs x * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < Rabs xx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < Un 0%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2eps1:RH12:eps1 > 00 < Un 0%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))Un_cv (fun n : nat => / INR (S n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))forall n : nat, INR (S n) <> 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))cv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nH10:cv_infty (fun n : nat => INR (S n))cv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn ncv_infty (fun n : nat => INR (S n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHlt:M0 < 0exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHeq:M0 = 0exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0M0:RHlt:M0 < 0n:natH10:(0 <= n)%natM0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHeq:M0 = 0exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHeq:M0 = 0exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:Zexists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1(0 <= M0_z)%Z -> exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1(0 <= M0_z)%Zx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1H11:(0 <= M0_z)%ZM0_nat:natH12:M0_z = Z.of_nat M0_natexists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1(0 <= M0_z)%Zx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0M0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1H11:(0 <= M0_z)%ZM0_nat:natH12:M0_z = Z.of_nat M0_natn:natH13:(M0_nat <= n)%natM0 < INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1(0 <= M0_z)%Zx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0M0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1H11:(0 <= M0_z)%ZM0_nat:natH12:M0_z = Z.of_nat M0_natn:natH13:(M0_nat <= n)%natM0 < IZR M0_zx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0M0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1H11:(0 <= M0_z)%ZM0_nat:natH12:M0_z = Z.of_nat M0_natn:natH13:(M0_nat <= n)%natIZR M0_z <= INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1(0 <= M0_z)%Zx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0M0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1H11:(0 <= M0_z)%ZM0_nat:natH12:M0_z = Z.of_nat M0_natn:natH13:(M0_nat <= n)%natIZR M0_z <= INR (S n)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1(0 <= M0_z)%Zx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing UnH9:forall n0 : nat, Un (S n0) <= Vn n0M0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1H11:(0 <= M0_z)%ZM0_nat:natH12:M0_z = Z.of_nat M0_natn:natH13:(M0_nat <= n)%nat(M0_nat <= S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1(0 <= M0_z)%Zx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing UnH9:forall n : nat, Un (S n) <= Vn nM0:RHgt:M0 > 0M0_z:=up M0:ZH10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1(0 <= M0_z)%Zx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nH8:Un_decreasing Unforall n : nat, Un (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natUn (S n) <= Rabs x * Un n * / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x ^ (M_nat + n + 1) / INR (fact (M_nat + n + 1)) <= Rabs x * (Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))) * / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x ^ (M_nat + n) * Rabs x / INR (fact (M_nat + n + 1)) <= Rabs x * (Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))) * / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat0 <= Rabs xx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat0 <= Rabs x ^ (M_nat + n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat/ INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n)) * / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat0 <= Rabs x ^ (M_nat + n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat/ INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n)) * / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat/ INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n)) * / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat/ INR (fact (S (M_nat + n))) <= / INR (fact (M_nat + n)) * / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat/ INR (fact (M_nat + n)) * / INR (S (M_nat + n)) <= / INR (fact (M_nat + n)) * / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat0 <= / INR (fact (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat/ INR (S (M_nat + n)) <= / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat/ INR (S (M_nat + n)) <= / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat0 < INR (S n) * INR (S (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S n) < INR (S (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S n) < INR (S (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(n < M_nat + n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(0 + n < M_nat + n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(0 < M_nat)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natINR (S (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * Un n * / INR (S n) <= Vn nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natRabs x * (/ INR (S n) * Un n) <= Rabs x * (/ INR (S n) * Un 0%nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat0 <= Rabs xx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat0 <= / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natUn n <= Un 0%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:nat0 <= / INR (S n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natUn n <= Un 0%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0H8:Un_decreasing Unn:natUn n <= Un 0%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natH7:forall n : nat, 0 < Un nUn_decreasing Unx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natRabs x ^ (M_nat + S n) / INR (fact (M_nat + S n)) <= Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natRabs x ^ (M_nat + n + 1) / INR (fact (M_nat + n + 1)) <= Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat0 <= Rabs x ^ (M_nat + n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natRabs x ^ 1 * / INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natRabs x ^ 1 * / INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natRabs x * / INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natRabs x * / INR (fact (S (M_nat + n))) <= / INR (fact (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat0 < INR (fact (S (M_nat + n)))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (S (M_nat + n))) * (Rabs x * / INR (fact (S (M_nat + n)))) <= INR (fact (S (M_nat + n))) * / INR (fact (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (S (M_nat + n))) * (Rabs x * / INR (fact (S (M_nat + n)))) <= INR (fact (S (M_nat + n))) * / INR (fact (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat1 * Rabs x <= INR (fact (S (M_nat + n))) * / INR (fact (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (S (M_nat + n))) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natRabs x <= INR (fact (S (M_nat + n))) * / INR (fact (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (S (M_nat + n))) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natRabs x <= INR (S (M_nat + n)) * 1x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (S (M_nat + n))) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natRabs x <= INR M_natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR M_nat <= INR (S (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (S (M_nat + n))) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natRabs x < IZR (Z.of_nat M_nat)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR M_nat <= INR (S (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (S (M_nat + n))) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR M_nat <= INR (S (M_nat + n))x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (S (M_nat + n))) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (M_nat + n)) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (S (M_nat + n))) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natINR (fact (S (M_nat + n))) <> 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:natS (M_nat + n) = (M_nat + n + 1)%natx:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natH7:forall n0 : nat, 0 < Un n0n:nat(M_nat + n + 1)%nat = (M_nat + S n)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> RH6:(1 <= M_nat)%natforall n : nat, 0 < Un nx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natn:nat0 < Rabs x ^ (M_nat + n)x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natn:nat0 < / INR (fact (M_nat + n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> RH6:(1 <= M_nat)%natn:nat0 < / INR (fact (M_nat + n))x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_natUn:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> Reps0:RH5:eps0 > 0Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R(1 <= M_nat)%natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat M_nateps0:RH5:eps0 > 01 <= INR M_natx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZH4:M = Z.of_nat 0eps0:RH5:eps0 > 01 <= INR 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat (S M_nat)eps0:RH5:eps0 > 0HrecM_nat:M = Z.of_nat M_nat -> 1 <= INR M_nat1 <= INR (S M_nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZH4:M = Z.of_nat 0eps0:RH5:eps0 > 0H6:IZR M > Rabs x /\ IZR M - Rabs x <= 1H7:IZR M > Rabs xH8:IZR M - Rabs x <= 11 <= INR 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat (S M_nat)eps0:RH5:eps0 > 0HrecM_nat:M = Z.of_nat M_nat -> 1 <= INR M_nat1 <= INR (S M_nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZH4:M = Z.of_nat 0eps0:RH5:eps0 > 0H6:IZR M > Rabs x /\ IZR M - Rabs x <= 1H7:INR 0 > Rabs xH8:IZR M - Rabs x <= 11 <= INR 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat (S M_nat)eps0:RH5:eps0 > 0HrecM_nat:M = Z.of_nat M_nat -> 1 <= INR M_nat1 <= INR (S M_nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZH3:(0 <= M)%ZM_nat:natH4:M = Z.of_nat (S M_nat)eps0:RH5:eps0 > 0HrecM_nat:M = Z.of_nat M_nat -> 1 <= INR M_nat1 <= INR (S M_nat)x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z(0 <= M)%Zx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):Z0 < Rabs xx:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZRabs x < IZR Mx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0eps:RH0:eps > 0H1:x <> 0H2:0 < Rabs xM:=up (Rabs x):ZRabs x < IZR Mx:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RUn_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n : nat, (n >= x0)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < epsexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (x ^ n / INR (fact n) - 0) < epsx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (x ^ n / INR (fact n) - 0) <= Rabs (Rabs x ^ n / INR (fact n) - 0)x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (x ^ n / INR (fact n)) <= Rabs x ^ n / INR (fact n)x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs x ^ n / INR (fact n) >= 0x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (x ^ n) * / INR (fact n) <= Rabs x ^ n * / INR (fact n)x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%nat/ INR (fact n) >= 0x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs x ^ n / INR (fact n) >= 0x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%nat/ INR (fact n) >= 0x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs x ^ n / INR (fact n) >= 0x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs x ^ n / INR (fact n) >= 0x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%nat0 <= Rabs x ^ nx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%nat0 <= / INR (fact n)x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natH3:x = 00 <= Rabs x ^ nx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natH3:x <> 00 <= Rabs x ^ nx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%nat0 <= / INR (fact n)x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natH3:x = 00 <= 0 ^ nx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natH3:x <> 00 <= Rabs x ^ nx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%nat0 <= / INR (fact n)x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natH3:x <> 00 <= Rabs x ^ nx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%nat0 <= / INR (fact n)x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsx:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%nat0 <= / INR (fact n)x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < epsapply H1; assumption. Qed.x:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < epsn:natH2:(n >= x0)%natRabs (Rabs x ^ n / INR (fact n) - 0) < eps