Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import Rseries.
Require Import Max.
Require Import Omega.
Local Open Scope R_scope.

(*****************************************************************)
Convergence properties of sequences
(*****************************************************************)

Definition Un_decreasing (Un:nat -> R) : Prop :=
  forall n:nat, Un (S n) <= Un n.
Definition opp_seq (Un:nat -> R) (n:nat) : R := - Un n.
Definition has_ub (Un:nat -> R) : Prop := bound (EUn Un).
Definition has_lb (Un:nat -> R) : Prop := bound (EUn (opp_seq Un)).

(**********)

forall Un : nat -> R, Un_growing Un -> has_ub Un -> {l : R | Un_cv Un l}

forall Un : nat -> R, Un_growing Un -> has_ub Un -> {l : R | Un_cv Un l}
Un:nat -> R
Hug:Un_growing Un
Heub:has_ub Un

{l : R | Un_cv Un l}
Un:nat -> R
Hug:Un_growing Un
Heub:has_ub Un

Un_cv Un (proj1_sig (completeness (EUn Un) Heub (EUn_noempty Un)))
Un:nat -> R
Hug:Un_growing Un
Heub:has_ub Un
l:R
H:is_lub (EUn Un) l

Un_cv Un (proj1_sig (exist (fun m : R => is_lub (EUn Un) m) l H))
now apply Un_cv_crit_lub. Qed.

forall Un : nat -> R, Un_decreasing Un -> Un_growing (opp_seq Un)

forall Un : nat -> R, Un_decreasing Un -> Un_growing (opp_seq Un)
Un:nat -> R

Un_decreasing Un -> Un_growing (opp_seq Un)
Un:nat -> R

(forall n : nat, Un (S n) <= Un n) -> forall n : nat, - Un n <= - Un (S n)
Un:nat -> R
H:forall n0 : nat, Un (S n0) <= Un n0
n:nat

- Un n <= - Un (S n)
Un:nat -> R
H:forall n0 : nat, Un (S n0) <= Un n0
n:nat

Un (S n) <= Un n
apply H. Qed.

forall Un : nat -> R, Un_decreasing Un -> has_lb Un -> {l : R | Un_cv Un l}

forall Un : nat -> R, Un_decreasing Un -> has_lb Un -> {l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un

{l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un

({l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}) -> {l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
X:{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}

{l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
X:{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}

{l : R | Un_cv (opp_seq Un) l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
X:{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}

Un_growing (opp_seq Un)
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
X:{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}
has_ub (opp_seq Un)
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
X:{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}

has_ub (opp_seq Un)
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un

{l : R | Un_cv (opp_seq Un) l} -> {l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:Un_cv (opp_seq Un) x

{l : R | Un_cv Un l}
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:Un_cv (opp_seq Un) x

Un_cv Un (- x)
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (opp_seq Un n) x < eps

Un_cv Un (- x)
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (opp_seq Un n - x) < eps

Un_cv Un (- x)
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (- Un n - x) < eps

Un_cv Un (- x)
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (- Un n - x) < eps

forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Un n) (- x) < eps
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (- Un n - x) < eps

forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - - x) < eps
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (- Un n - x) < eps0
eps:R
H1:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - - x) < eps
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (- Un n - x) < eps0
eps:R
H1:eps > 0
x0:nat
H2:forall n : nat, (n >= x0)%nat -> Rabs (- Un n - x) < eps

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - - x) < eps
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (- Un n0 - x) < eps0
eps:R
H1:eps > 0
x0:nat
H2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (- Un n0 - x) < eps
n:nat
H3:(n >= x0)%nat

Rabs (Un n - - x) < eps
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (- Un n0 - x) < eps0
eps:R
H1:eps > 0
x0:nat
H2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (- Un n0 - x) < eps
n:nat
H3:(n >= x0)%nat
H4:Rabs (- Un n - x) < eps

Rabs (Un n - - x) < eps
Un:nat -> R
H:Un_decreasing Un
H0:has_lb Un
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (- Un n0 - x) < eps0
eps:R
H1:eps > 0
x0:nat
H2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (- Un n0 - x) < eps
n:nat
H3:(n >= x0)%nat
H4:Rabs (- Un n - x) < eps

Rabs (- (Un n - - x)) < eps
replace (- (Un n - - x)) with (- Un n - x); [ assumption | ring ]. Qed. (***********)

forall Un : nat -> R, has_ub Un -> {l : R | is_lub (EUn Un) l}

forall Un : nat -> R, has_ub Un -> {l : R | is_lub (EUn Un) l}
Un:nat -> R
H:has_ub Un

{l : R | is_lub (EUn Un) l}
Un:nat -> R
H:bound (EUn Un)

{l : R | is_lub (EUn Un) l}
Un:nat -> R
H:bound (EUn Un)

bound (EUn Un)
Un:nat -> R
H:bound (EUn Un)
exists x : R, EUn Un x
Un:nat -> R
H:bound (EUn Un)

exists x : R, EUn Un x
Un:nat -> R
H:bound (EUn Un)

EUn Un (Un 0%nat)
Un:nat -> R
H:bound (EUn Un)

exists i : nat, Un 0%nat = Un i
exists 0%nat; reflexivity. Qed. (**********)

forall Un : nat -> R, has_lb Un -> {l : R | is_lub (EUn (opp_seq Un)) l}

forall Un : nat -> R, has_lb Un -> {l : R | is_lub (EUn (opp_seq Un)) l}
Un:nat -> R
H:bound (EUn (opp_seq Un))

{l : R | is_lub (EUn (opp_seq Un)) l}
Un:nat -> R
H:bound (EUn (opp_seq Un))

bound (EUn (opp_seq Un))
Un:nat -> R
H:bound (EUn (opp_seq Un))
exists x : R, EUn (opp_seq Un) x
Un:nat -> R
H:bound (EUn (opp_seq Un))

exists x : R, EUn (opp_seq Un) x
Un:nat -> R
H:bound (EUn (opp_seq Un))

EUn (opp_seq Un) (- Un 0%nat)
Un:nat -> R
H:bound (EUn (opp_seq Un))

- Un 0%nat = opp_seq Un 0
reflexivity. Qed. Definition lub (Un:nat -> R) (pr:has_ub Un) : R := let (a,_) := ub_to_lub Un pr in a. Definition glb (Un:nat -> R) (pr:has_lb Un) : R := let (a,_) := lb_to_glb Un pr in - a. (* Compatibility with previous unappropriate terminology *) Notation maj_sup := ub_to_lub (only parsing). Notation min_inf := lb_to_glb (only parsing). Notation majorant := lub (only parsing). Notation minorant := glb (only parsing).

forall (Un : nat -> R) (k : nat), has_ub Un -> has_ub (fun i : nat => Un (k + i)%nat)

forall (Un : nat -> R) (k : nat), has_ub Un -> has_ub (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:has_ub Un

has_ub (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:bound (EUn Un)

has_ub (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn Un) m

has_ub (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn Un) m
x:R
H0:is_upper_bound (EUn Un) x

has_ub (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn Un) m
x:R
H0:forall x0 : R, EUn Un x0 -> x0 <= x

has_ub (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn Un) m
x:R
H0:forall x0 : R, EUn Un x0 -> x0 <= x

bound (EUn (fun i : nat => Un (k + i)%nat))
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn Un) m
x:R
H0:forall x0 : R, EUn Un x0 -> x0 <= x

is_upper_bound (EUn (fun i : nat => Un (k + i)%nat)) x
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn Un) m
x:R
H0:forall x0 : R, EUn Un x0 -> x0 <= x

forall x0 : R, EUn (fun i : nat => Un (k + i)%nat) x0 -> x0 <= x
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn Un) m
x:R
H0:forall x1 : R, EUn Un x1 -> x1 <= x
x0:R
H1:EUn (fun i : nat => Un (k + i)%nat) x0

x0 <= x
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn Un) m
x:R
H0:forall x1 : R, EUn Un x1 -> x1 <= x
x0:R
H1:EUn (fun i : nat => Un (k + i)%nat) x0

EUn Un x0
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn Un) m
x:R
H0:forall x2 : R, EUn Un x2 -> x2 <= x
x0:R
H1:EUn (fun i : nat => Un (k + i)%nat) x0
x1:nat
H2:x0 = Un (k + x1)%nat

EUn Un x0
exists (k + x1)%nat; assumption. Qed.

forall (Un : nat -> R) (k : nat), has_lb Un -> has_lb (fun i : nat => Un (k + i)%nat)

forall (Un : nat -> R) (k : nat), has_lb Un -> has_lb (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:has_lb Un

has_lb (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:bound (EUn (opp_seq Un))

has_lb (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn (opp_seq Un)) m

has_lb (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
x:R
H0:is_upper_bound (EUn (opp_seq Un)) x

has_lb (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
x:R
H0:forall x0 : R, EUn (opp_seq Un) x0 -> x0 <= x

has_lb (fun i : nat => Un (k + i)%nat)
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
x:R
H0:forall x0 : R, EUn (opp_seq Un) x0 -> x0 <= x

bound (EUn (opp_seq (fun i : nat => Un (k + i)%nat)))
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
x:R
H0:forall x0 : R, EUn (opp_seq Un) x0 -> x0 <= x

is_upper_bound (EUn (opp_seq (fun i : nat => Un (k + i)%nat))) x
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
x:R
H0:forall x0 : R, EUn (opp_seq Un) x0 -> x0 <= x

forall x0 : R, EUn (opp_seq (fun i : nat => Un (k + i)%nat)) x0 -> x0 <= x
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
x:R
H0:forall x1 : R, EUn (opp_seq Un) x1 -> x1 <= x
x0:R
H1:EUn (opp_seq (fun i : nat => Un (k + i)%nat)) x0

x0 <= x
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
x:R
H0:forall x1 : R, EUn (opp_seq Un) x1 -> x1 <= x
x0:R
H1:EUn (opp_seq (fun i : nat => Un (k + i)%nat)) x0

EUn (opp_seq Un) x0
Un:nat -> R
k:nat
H:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (fun i : nat => Un (k + i)%nat)) x0
x1:nat
H2:x0 = opp_seq (fun i : nat => Un (k + i)%nat) x1

EUn (opp_seq Un) x0
exists (k + x1)%nat; assumption. Qed. Definition sequence_ub (Un:nat -> R) (pr:has_ub Un) (i:nat) : R := lub (fun k:nat => Un (i + k)%nat) (maj_ss Un i pr). Definition sequence_lb (Un:nat -> R) (pr:has_lb Un) (i:nat) : R := glb (fun k:nat => Un (i + k)%nat) (min_ss Un i pr). (* Compatibility *) Notation sequence_majorant := sequence_ub (only parsing). Notation sequence_minorant := sequence_lb (only parsing).

forall (Un : nat -> R) (pr : has_ub Un), Un_decreasing (sequence_ub Un pr)

forall (Un : nat -> R) (pr : has_ub Un), Un_decreasing (sequence_ub Un pr)
Un:nat -> R
pr:has_ub Un

Un_decreasing (sequence_ub Un pr)
Un:nat -> R
pr:has_ub Un

forall n : nat, sequence_ub Un pr (S n) <= sequence_ub Un pr n
Un:nat -> R
pr:has_ub Un
n:nat

sequence_ub Un pr (S n) <= sequence_ub Un pr n
Un:nat -> R
pr:has_ub Un
n:nat

lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b

lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b

lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x

x <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0

x <= x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0

is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0

forall x1 : R, EUn (fun k : nat => Un (S n + k)%nat) x1 -> x1 <= x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
x1:R
H5:EUn (fun k : nat => Un (S n + k)%nat) x1

x1 <= x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:forall x2 : R, EUn (fun k : nat => Un (n + k)%nat) x2 -> x2 <= x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
x1:R
H5:EUn (fun k : nat => Un (S n + k)%nat) x1

x1 <= x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:forall x2 : R, EUn (fun k : nat => Un (n + k)%nat) x2 -> x2 <= x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
x1:R
H5:EUn (fun k : nat => Un (S n + k)%nat) x1

EUn (fun k : nat => Un (n + k)%nat) x1
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:forall x3 : R, EUn (fun k : nat => Un (n + k)%nat) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
x1:R
H5:EUn (fun k : nat => Un (S n + k)%nat) x1
x2:nat
H:x1 = Un (S n + x2)%nat

EUn (fun k : nat => Un (n + k)%nat) x1
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:forall x3 : R, EUn (fun k : nat => Un (n + k)%nat) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
x1:R
H5:EUn (fun k : nat => Un (S n + k)%nat) x1
x2:nat
H:x1 = Un (S n + x2)%nat

x1 = Un (n + (1 + x2))%nat
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:forall x3 : R, EUn (fun k : nat => Un (n + k)%nat) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
x1:R
H5:EUn (fun k : nat => Un (S n + k)%nat) x1
x2:nat
H:x1 = Un (S n + x2)%nat

x1 = Un (S n + x2)%nat
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:forall x3 : R, EUn (fun k : nat => Un (n + k)%nat) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
x1:R
H5:EUn (fun k : nat => Un (S n + k)%nat) x1
x2:nat
H:x1 = Un (S n + x2)%nat
(S n + x2)%nat = (n + (1 + x2))%nat
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:forall x3 : R, EUn (fun k : nat => Un (n + k)%nat) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Maj2:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
x1:R
H5:EUn (fun k : nat => Un (S n + k)%nat) x1
x2:nat
H:x1 = Un (S n + x2)%nat

(S n + x2)%nat = (n + (1 + x2))%nat
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x

lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x

is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)) -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
H5:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))
H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) <= b

lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
H5:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))
H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) <= b
H7:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) <= x0

lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
H5:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))
H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) <= b
H7:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) <= x0
H8:x0 <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr)

lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) = x0
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x

is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr))
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x

is_lub (EUn (fun k : nat => Un (n + k)%nat)) (let (a, _) := ub_to_lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr) in a)
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
Maj1:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x

forall x1 : R, is_lub (EUn (fun k : nat => Un (n + k)%nat)) x1 -> is_lub (EUn (fun k : nat => Un (n + k)%nat)) x1
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b

lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b

is_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)) -> lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
is_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
H5:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))
H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= b

lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
is_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
H5:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))
H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= b
H7:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= x

lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
is_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
H5:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))
H6:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= b
H7:lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) <= x
H8:x <= lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)

lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b
is_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b

is_lub (EUn (fun k : nat => Un (S n + k)%nat)) (lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b

is_lub (EUn (fun k : nat => Un (S n + k)%nat)) (let (a, _) := ub_to_lub (fun k : nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) in a)
Un:nat -> R
pr:has_ub Un
n:nat
x:R
H1:is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) x
H2:forall b : R, is_upper_bound (EUn (fun k : nat => Un (S n + k)%nat)) b -> x <= b
x0:R
H3:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) x0
H4:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> x0 <= b

forall x1 : R, is_lub (EUn (fun k : nat => Un (S n + k)%nat)) x1 -> is_lub (EUn (fun k : nat => Un (S n + k)%nat)) x1
trivial. Qed.

forall (Un : nat -> R) (pr : has_lb Un), Un_growing (sequence_lb Un pr)

forall (Un : nat -> R) (pr : has_lb Un), Un_growing (sequence_lb Un pr)
Un:nat -> R
pr:has_lb Un

Un_growing (sequence_lb Un pr)
Un:nat -> R
pr:has_lb Un

forall n : nat, sequence_lb Un pr n <= sequence_lb Un pr (S n)
Un:nat -> R
pr:has_lb Un
n:nat

sequence_lb Un pr n <= sequence_lb Un pr (S n)
Un:nat -> R
pr:has_lb Un
n:nat

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0

- x0 <= - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0

- x0 <= - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0

- x0 <= - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b

- x0 <= - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b

x <= x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b

is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b

is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b

forall x1 : R, EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1 -> x1 <= x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
x1:R
H5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1

x1 <= x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:forall x2 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x2 -> x2 <= x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
x1:R
H5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1

x1 <= x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:forall x2 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x2 -> x2 <= x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
x1:R
H5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1

EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x1
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
x1:R
H5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1
x2:nat
H6:x1 = opp_seq (fun k : nat => Un (S n + k)%nat) x2

EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x1
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
x1:R
H5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1
x2:nat
H6:x1 = opp_seq (fun k : nat => Un (S n + k)%nat) x2

x1 = opp_seq (fun k : nat => Un (n + k)%nat) (1 + x2)
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
x1:R
H5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1
x2:nat
H6:x1 = - Un (S n + x2)%nat

x1 = opp_seq (fun k : nat => Un (n + k)%nat) (1 + x2)
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
x1:R
H5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1
x2:nat
H6:x1 = - Un (S n + x2)%nat

x1 = - Un (n + (1 + x2))%nat
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
x1:R
H5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1
x2:nat
H6:x1 = - Un (S n + x2)%nat

x1 = - Un (S n + x2)%nat
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
x1:R
H5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1
x2:nat
H6:x1 = - Un (S n + x2)%nat
(S n + x2)%nat = (n + (1 + x2))%nat
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Maj2:glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H2:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H3:forall x3 : R, EUn (opp_seq (fun k : nat => Un (n + k)%nat)) x3 -> x3 <= x0
H4:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
x1:R
H5:EUn (opp_seq (fun k : nat => Un (S n + k)%nat)) x1
x2:nat
H6:x1 = - Un (S n + x2)%nat

(S n + x2)%nat = (n + (1 + x2))%nat
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x

is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) -> glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
H1:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b)

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b)
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
H4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b)
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
H4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b
H6:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= x0

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b)
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
H4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b
H6:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= x0
H7:x0 <= - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b)
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b)
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> x0 <= b
H4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= b
H6:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) <= x0
H7:x0 <= - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr)

- - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) = - x0
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x

is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x

is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- (let (a, _) := lb_to_glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr) in - a))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x

forall x1 : R, is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x1 -> is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- - x1)
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Maj1:glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
x1:R

is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x1 -> is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x1
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0

glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0

is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) -> glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H1:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))

glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b)

glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b)
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b

glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b)
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b
H6:- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= x

glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b)
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b
H6:- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= x
H7:x <= - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)

glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b)
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
H1:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b)
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> x <= b
H4:is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
H5:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) b -> - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= b
H6:- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) <= x
H7:x <= - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr)

- - glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0

is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0

is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) (- (let (a, _) := lb_to_glb (fun k : nat => Un (S n + k)%nat) (min_ss Un (S n) pr) in - a))
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0

forall x1 : R, is_lub (EUn (opp_seq (fun k : nat => Un (S (n + k))))) x1 -> is_lub (EUn (opp_seq (fun k : nat => Un (S (n + k))))) (- - x1)
Un:nat -> R
pr:has_lb Un
n:nat
H:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) l}
H0:{l : R | is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun k : nat => Un (S n + k)%nat))) x
x0:R
p0:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
x1:R

is_lub (EUn (opp_seq (fun k : nat => Un (S (n + k))))) x1 -> is_lub (EUn (opp_seq (fun k : nat => Un (S (n + k))))) x1
trivial. Qed. (**********)

forall (Un : nat -> R) (pr1 : has_ub Un) (pr2 : has_lb Un) (n : nat), sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

forall (Un : nat -> R) (pr1 : has_ub Un) (pr2 : has_lb Un) (n : nat), sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

sequence_lb Un pr2 n <= Un n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= Un n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l} -> glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= Un n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= Un n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x

glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= Un n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x

- x <= Un n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)

- x <= Un n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
H0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b

- x <= Un n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= x
H0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b

- x <= Un n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= x
H0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b

- x <= - - Un n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= x
H0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b

- Un n <= x
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= x
H0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b

EUn (opp_seq (fun i : nat => Un (n + i)%nat)) (- Un n)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= x
H0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b

- Un n = opp_seq (fun i : nat => Un (n + i)%nat) 0
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:forall x0 : R, EUn (opp_seq (fun i : nat => Un (n + i)%nat)) x0 -> x0 <= x
H0:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b

- Un n = - Un (n + 0)%nat
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x

- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x

is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) -> - x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
H:is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))

- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b)

- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b)
H0:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
H1:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b

- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b)
H0:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
H1:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b
H4:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= x

- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b)
H0:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
H1:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b
H4:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= x
H5:x <= - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)

- x = glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b)
H:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)) /\ (forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b)
H0:is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
H1:forall b : R, is_upper_bound (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) b -> x <= b
H2:is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
H3:forall b : R, is_upper_bound (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) b -> - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= b
H4:- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) <= x
H5:x <= - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)

- x = - - glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x

is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x

is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- (let (a, _) := lb_to_glb (fun k : nat => Un (n + k)%nat) (min_ss Un n pr2) in - a))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x

forall x0 : R, is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 -> is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) (- - x0)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
x:R
p:is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) x
x0:R

is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0 -> is_lub (EUn (opp_seq (fun k : nat => Un (n + k)%nat))) x0
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

{l : R | is_lub (EUn (opp_seq (fun i : nat => Un (n + i)%nat))) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

has_lb (fun i : nat => Un (n + i)%nat)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

Un n <= sequence_ub Un pr1 n
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

Un n <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l} -> Un n <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}

Un n <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x

Un n <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x

Un n <= x
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)

Un n <= x
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)
H:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x
H0:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b

Un n <= x
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)
H:forall x0 : R, EUn (fun i : nat => Un (n + i)%nat) x0 -> x0 <= x
H0:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b

Un n <= x
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)
H:forall x0 : R, EUn (fun i : nat => Un (n + i)%nat) x0 -> x0 <= x
H0:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b

EUn (fun i : nat => Un (n + i)%nat) (Un n)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)
H:forall x0 : R, EUn (fun i : nat => Un (n + i)%nat) x0 -> x0 <= x
H0:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b

Un n = Un (n + 0)%nat
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x

x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x

is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)) -> x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
H:is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))

x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)
H:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)) /\ (forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b)

x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)
H:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)) /\ (forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b)
H0:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x
H1:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b
H2:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))
H3:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b

x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)
H:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)) /\ (forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b)
H0:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x
H1:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b
H2:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))
H3:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b
H4:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= x

x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x /\ (forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b)
H:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)) /\ (forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b)
H0:is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) x
H1:forall b : R, is_upper_bound (EUn (fun i : nat => Un (n + i)%nat)) b -> x <= b
H2:is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))
H3:forall b : R, is_upper_bound (EUn (fun k : nat => Un (n + k)%nat)) b -> lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= b
H4:lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) <= x
H5:x <= lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)

x = lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x
is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x

is_lub (EUn (fun k : nat => Un (n + k)%nat)) (lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x

is_lub (EUn (fun k : nat => Un (n + k)%nat)) (let (a, _) := ub_to_lub (fun k : nat => Un (n + k)%nat) (maj_ss Un n pr1) in a)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
X:{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
x:R
p:is_lub (EUn (fun i : nat => Un (n + i)%nat)) x

forall x0 : R, is_lub (EUn (fun k : nat => Un (n + k)%nat)) x0 -> is_lub (EUn (fun k : nat => Un (n + k)%nat)) x0
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat
{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

{l : R | is_lub (EUn (fun i : nat => Un (n + i)%nat)) l}
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
n:nat

has_ub (fun i : nat => Un (n + i)%nat)
apply maj_ss; assumption. Qed.

forall Un : nat -> R, has_ub Un -> forall pr2 : has_lb Un, has_ub (sequence_lb Un pr2)

forall Un : nat -> R, has_ub Un -> forall pr2 : has_lb Un, has_ub (sequence_lb Un pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un

has_ub (sequence_lb Un pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

has_ub (sequence_lb Un pr2)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

bound (EUn (sequence_lb Un pr2))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

exists m : R, is_upper_bound (EUn (sequence_lb Un pr2)) m
Un:nat -> R
pr1:bound (EUn Un)
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

exists m : R, is_upper_bound (EUn (sequence_lb Un pr2)) m
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

exists m : R, is_upper_bound (EUn (sequence_lb Un pr2)) m
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:is_upper_bound (EUn Un) x

exists m : R, is_upper_bound (EUn (sequence_lb Un pr2)) m
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:is_upper_bound (EUn Un) x

is_upper_bound (EUn (sequence_lb Un pr2)) x
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:is_upper_bound (EUn Un) x

forall x0 : R, EUn (sequence_lb Un pr2) x0 -> x0 <= x
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:is_upper_bound (EUn Un) x
x0:R
H1:EUn (sequence_lb Un pr2) x0

x0 <= x
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x1 : R, EUn Un x1 -> x1 <= x
x0:R
H1:EUn (sequence_lb Un pr2) x0

x0 <= x
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn Un x2 -> x2 <= x
x0:R
H1:EUn (sequence_lb Un pr2) x0
x1:nat
H2:x0 = sequence_lb Un pr2 x1

x0 <= x
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn Un x2 -> x2 <= x
x0:R
H1:EUn (sequence_lb Un pr2) x0
x1:nat
H2:x0 = sequence_lb Un pr2 x1

sequence_lb Un pr2 x1 <= x
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn Un x2 -> x2 <= x
x0:R
H1:EUn (sequence_lb Un pr2) x0
x1:nat
H2:x0 = sequence_lb Un pr2 x1

sequence_lb Un pr2 x1 <= Un x1
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn Un x2 -> x2 <= x
x0:R
H1:EUn (sequence_lb Un pr2) x0
x1:nat
H2:x0 = sequence_lb Un pr2 x1
Un x1 <= x
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn Un x2 -> x2 <= x
x0:R
H1:EUn (sequence_lb Un pr2) x0
x1:nat
H2:x0 = sequence_lb Un pr2 x1

Un x1 <= x
Un:nat -> R
pr1:exists m : R, is_upper_bound (EUn Un) m
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn Un x2 -> x2 <= x
x0:R
H1:EUn (sequence_lb Un pr2) x0
x1:nat
H2:x0 = sequence_lb Un pr2 x1

EUn Un (Un x1)
exists x1; reflexivity. Qed.

forall (Un : nat -> R) (pr1 : has_ub Un), has_lb Un -> has_lb (sequence_ub Un pr1)

forall (Un : nat -> R) (pr1 : has_ub Un), has_lb Un -> has_lb (sequence_ub Un pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un

has_lb (sequence_ub Un pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

has_lb (sequence_ub Un pr1)
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

bound (EUn (opp_seq (sequence_ub Un pr1)))
Un:nat -> R
pr1:has_ub Un
pr2:has_lb Un
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

exists m : R, is_upper_bound (EUn (opp_seq (sequence_ub Un pr1))) m
Un:nat -> R
pr1:has_ub Un
pr2:bound (EUn (opp_seq Un))
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

exists m : R, is_upper_bound (EUn (opp_seq (sequence_ub Un pr1))) m
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n

exists m : R, is_upper_bound (EUn (opp_seq (sequence_ub Un pr1))) m
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:is_upper_bound (EUn (opp_seq Un)) x

exists m : R, is_upper_bound (EUn (opp_seq (sequence_ub Un pr1))) m
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:is_upper_bound (EUn (opp_seq Un)) x

is_upper_bound (EUn (opp_seq (sequence_ub Un pr1))) x
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:is_upper_bound (EUn (opp_seq Un)) x

forall x0 : R, EUn (opp_seq (sequence_ub Un pr1)) x0 -> x0 <= x
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:is_upper_bound (EUn (opp_seq Un)) x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0

x0 <= x
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x1 : R, EUn (opp_seq Un) x1 -> x1 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0

x0 <= x
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0
x1:nat
H2:x0 = opp_seq (sequence_ub Un pr1) x1

x0 <= x
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0
x1:nat
H2:x0 = opp_seq (sequence_ub Un pr1) x1

opp_seq (sequence_ub Un pr1) x1 <= x
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0
x1:nat
H2:x0 = opp_seq (sequence_ub Un pr1) x1

opp_seq (sequence_ub Un pr1) x1 <= opp_seq Un x1
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0
x1:nat
H2:x0 = opp_seq (sequence_ub Un pr1) x1
opp_seq Un x1 <= x
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0
x1:nat
H2:x0 = opp_seq (sequence_ub Un pr1) x1
H3:sequence_lb Un pr2 x1 <= Un x1 <= sequence_ub Un pr1 x1
H4:sequence_lb Un pr2 x1 <= Un x1
H5:Un x1 <= sequence_ub Un pr1 x1

opp_seq (sequence_ub Un pr1) x1 <= opp_seq Un x1
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0
x1:nat
H2:x0 = opp_seq (sequence_ub Un pr1) x1
opp_seq Un x1 <= x
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0
x1:nat
H2:x0 = opp_seq (sequence_ub Un pr1) x1
H3:sequence_lb Un pr2 x1 <= Un x1 <= sequence_ub Un pr1 x1
H4:sequence_lb Un pr2 x1 <= Un x1
H5:Un x1 <= sequence_ub Un pr1 x1

Un x1 <= sequence_ub Un pr1 x1
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0
x1:nat
H2:x0 = opp_seq (sequence_ub Un pr1) x1
opp_seq Un x1 <= x
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0
x1:nat
H2:x0 = opp_seq (sequence_ub Un pr1) x1

opp_seq Un x1 <= x
Un:nat -> R
pr1:has_ub Un
pr2:exists m : R, is_upper_bound (EUn (opp_seq Un)) m
H:forall n : nat, sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n
x:R
H0:forall x2 : R, EUn (opp_seq Un) x2 -> x2 <= x
x0:R
H1:EUn (opp_seq (sequence_ub Un pr1)) x0
x1:nat
H2:x0 = opp_seq (sequence_ub Un pr1) x1

EUn (opp_seq Un) (opp_seq Un x1)
exists x1; reflexivity. Qed. (**********)

forall Un : nat -> R, Cauchy_crit Un -> has_ub Un

forall Un : nat -> R, Cauchy_crit Un -> has_ub Un
Un:nat -> R
H:Cauchy_crit Un

has_ub Un
Un:nat -> R
H:Cauchy_crit Un

bound (EUn Un)
Un:nat -> R
H:Cauchy_crit Un

Cauchy_crit Un
assumption. Qed. (**********)

forall Un : nat -> R, Cauchy_crit Un -> Cauchy_crit (opp_seq Un)

forall Un : nat -> R, Cauchy_crit Un -> Cauchy_crit (opp_seq Un)
Un:nat -> R

Cauchy_crit Un -> Cauchy_crit (opp_seq Un)
Un:nat -> R

(forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (opp_seq Un n) (opp_seq Un m) < eps
Un:nat -> R

(forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (Un n - Un m) < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (opp_seq Un n - opp_seq Un m) < eps
Un:nat -> R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (Un n - Un m) < eps0
eps:R
H0:eps > 0

exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (opp_seq Un n - opp_seq Un m) < eps
Un:nat -> R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (Un n - Un m) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n m : nat, (n >= x)%nat -> (m >= x)%nat -> Rabs (Un n - Un m) < eps

exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> Rabs (opp_seq Un n - opp_seq Un m) < eps
Un:nat -> R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> Rabs (Un n0 - Un m0) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> Rabs (Un n0 - Un m0) < eps
n, m:nat
H2:(n >= x)%nat
H3:(m >= x)%nat

Rabs (opp_seq Un n - opp_seq Un m) < eps
Un:nat -> R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> Rabs (Un n0 - Un m0) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> Rabs (Un n0 - Un m0) < eps
n, m:nat
H2:(n >= x)%nat
H3:(m >= x)%nat

Rabs (- Un n - - Un m) < eps
Un:nat -> R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> Rabs (Un n0 - Un m0) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> Rabs (Un n0 - Un m0) < eps
n, m:nat
H2:(n >= x)%nat
H3:(m >= x)%nat

Rabs (- (- Un n - - Un m)) < eps
replace (- (- Un n - - Un m)) with (Un n - Un m); [ apply H1; assumption | ring ]. Qed. (**********)

forall Un : nat -> R, Cauchy_crit Un -> has_lb Un

forall Un : nat -> R, Cauchy_crit Un -> has_lb Un
Un:nat -> R
H:Cauchy_crit Un

has_lb Un
Un:nat -> R
H:Cauchy_crit Un

bound (EUn (opp_seq Un))
Un:nat -> R
H:Cauchy_crit Un
H0:Cauchy_crit (opp_seq Un)

bound (EUn (opp_seq Un))
Un:nat -> R
H:Cauchy_crit Un
H0:Cauchy_crit (opp_seq Un)

Cauchy_crit (opp_seq Un)
assumption. Qed. (**********)

forall (Un : nat -> R) (pr : Cauchy_crit Un), {l : R | Un_cv (sequence_ub Un (cauchy_maj Un pr)) l}

forall (Un : nat -> R) (pr : Cauchy_crit Un), {l : R | Un_cv (sequence_ub Un (cauchy_maj Un pr)) l}
Un:nat -> R
pr:Cauchy_crit Un

{l : R | Un_cv (sequence_ub Un (cauchy_maj Un pr)) l}
Un:nat -> R
pr:Cauchy_crit Un

Un_decreasing (sequence_ub Un (cauchy_maj Un pr))
Un:nat -> R
pr:Cauchy_crit Un
has_lb (sequence_ub Un (cauchy_maj Un pr))
Un:nat -> R
pr:Cauchy_crit Un

has_lb (sequence_ub Un (cauchy_maj Un pr))
Un:nat -> R
pr:Cauchy_crit Un

has_lb Un
Un:nat -> R
pr:Cauchy_crit Un

Cauchy_crit Un
assumption. Qed. (**********)

forall (Un : nat -> R) (pr : Cauchy_crit Un), {l : R | Un_cv (sequence_lb Un (cauchy_min Un pr)) l}

forall (Un : nat -> R) (pr : Cauchy_crit Un), {l : R | Un_cv (sequence_lb Un (cauchy_min Un pr)) l}
Un:nat -> R
pr:Cauchy_crit Un

{l : R | Un_cv (sequence_lb Un (cauchy_min Un pr)) l}
Un:nat -> R
pr:Cauchy_crit Un

Un_growing (sequence_lb Un (cauchy_min Un pr))
Un:nat -> R
pr:Cauchy_crit Un
has_ub (sequence_lb Un (cauchy_min Un pr))
Un:nat -> R
pr:Cauchy_crit Un

has_ub (sequence_lb Un (cauchy_min Un pr))
Un:nat -> R
pr:Cauchy_crit Un

has_ub Un
Un:nat -> R
pr:Cauchy_crit Un

Cauchy_crit Un
assumption. Qed.

forall x y : R, (forall eps : R, 0 < eps -> Rabs (x - y) < eps) -> x = y

forall x y : R, (forall eps : R, 0 < eps -> Rabs (x - y) < eps) -> x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y

0 < y - x -> x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
0 < y - x
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
H0:0 < y - x

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
0 < y - x
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
H0:0 < y - x
H1:Rabs (x - y) < y - x

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
0 < y - x
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
H0:0 < y - x
H1:Rabs (- (x - y)) < y - x

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
0 < y - x
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
H0:0 < y - x
H1:Rabs (y - x) < y - x
H2:- (x - y) = y - x

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
0 < y - x
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
H0:0 < y - x
H1:y - x < y - x
H2:- (x - y) = y - x

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
H0:0 < y - x
H1:Rabs (y - x) < y - x
H2:- (x - y) = y - x
y - x >= 0
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
0 < y - x
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
H0:0 < y - x
H1:Rabs (y - x) < y - x
H2:- (x - y) = y - x

y - x >= 0
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y
0 < y - x
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y

0 < y - x
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hlt:x < y

x + 0 < x + (y - x)
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Heq:x = y

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y

0 < x - y -> x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
0 < x - y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
H0:0 < x - y

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
0 < x - y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
H0:0 < x - y
H1:Rabs (x - y) < x - y

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
0 < x - y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
H0:0 < x - y
H1:x - y < x - y

x = y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
H0:0 < x - y
H1:Rabs (x - y) < x - y
x - y >= 0
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
0 < x - y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
H0:0 < x - y
H1:Rabs (x - y) < x - y

x - y >= 0
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y
0 < x - y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y

0 < x - y
x, y:R
H:forall eps : R, 0 < eps -> Rabs (x - y) < eps
Hgt:x > y

y + 0 < y + (x - y)
rewrite Rplus_0_r; replace (y + (x - y)) with x; [ assumption | ring ]. Qed.

forall r1 r2 : R, ~ r1 < r2 -> r1 >= r2

forall r1 r2 : R, ~ r1 < r2 -> r1 >= r2
r1, r2:R

r1 < r2 \/ r1 = r2 \/ r1 > r2 -> ~ r1 < r2 -> r1 > r2 \/ r1 = r2
tauto. Qed. (**********)

forall (Un : nat -> R) (pr : has_ub Un) (eps : R), 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps

forall (Un : nat -> R) (pr : has_ub Un) (eps : R), 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un

forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R

forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat

forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat

forall n : nat, Vn n = Un (In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat

Vn 0%nat = Un (In 0%nat)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
Vn (S n) = Un (In (S n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)

Vn (S n) = Un (In (S n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)

(if Rle_lt_dec (Vn n) (Un (S n)) then Un (S n) else Vn n) = Un (if Rle_lt_dec (if Rle_lt_dec (Vn n) (Un (S n)) then Un (S n) else Vn n) (Un (S n)) then S n else In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1:Vn n <= Un (S n)

Un (S n) = Un (if Rle_lt_dec (Un (S n)) (Un (S n)) then S n else In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1:Un (S n) < Vn n
Vn n = Un (if Rle_lt_dec (Vn n) (Un (S n)) then S n else In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1:Vn n <= Un (S n)
H2:Un (S n) <= Un (S n)

Un (S n) = Un (S n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1:Vn n <= Un (S n)
H2:Un (S n) < Un (S n)
Un (S n) = Un (In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1:Un (S n) < Vn n
Vn n = Un (if Rle_lt_dec (Vn n) (Un (S n)) then S n else In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1:Vn n <= Un (S n)
H2:Un (S n) < Un (S n)

Un (S n) = Un (In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1:Un (S n) < Vn n
Vn n = Un (if Rle_lt_dec (Vn n) (Un (S n)) then S n else In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1:Un (S n) < Vn n

Vn n = Un (if Rle_lt_dec (Vn n) (Un (S n)) then S n else In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1:Un (S n) < Vn n
H2:Vn n <= Un (S n)

Vn n = Un (S n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1, H2:Un (S n) < Vn n
Vn n = Un (In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
n:nat
IHn:Vn n = Un (In n)
H1, H2:Un (S n) < Vn n

Vn n = Un (In n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)

forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)

has_ub Vn
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
ub:R
Hub:is_upper_bound (EUn Un) ub
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)

has_ub Vn
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
ub:R
Hub:is_upper_bound (EUn Un) ub
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)

is_upper_bound (EUn Vn) ub
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
ub:R
Hub:is_upper_bound (EUn Un) ub
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
x:R
n:nat
Hn:x = Vn n

x <= ub
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
ub:R
Hub:is_upper_bound (EUn Un) ub
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
x:R
n:nat
Hn:x = Vn n

Un (In n) <= ub
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
ub:R
Hub:is_upper_bound (EUn Un) ub
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
x:R
n:nat
Hn:x = Vn n

EUn Un (Un (In n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn

forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn

Un_growing Vn
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat

Vn n <= Vn (S n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn

Vn 0%nat <= Vn 1%nat
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
Vn (S n) <= Vn (S (S n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn

Un 0%nat <= (if Rle_lt_dec (Un 0%nat) (Un 1%nat) then Un 1%nat else Un 0%nat)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
Vn (S n) <= Vn (S (S n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
H:Un 0%nat <= Un 1%nat

Un 0%nat <= Un 1%nat
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
Un 0%nat <= Un 0%nat
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
Vn (S n) <= Vn (S (S n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn

Un 0%nat <= Un 0%nat
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
Vn (S n) <= Vn (S (S n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)

Vn (S n) <= Vn (S (S n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)

(if Rle_lt_dec (Vn n) (Un (S n)) then Un (S n) else Vn n) <= (if Rle_lt_dec (if Rle_lt_dec (Vn n) (Un (S n)) then Un (S n) else Vn n) (Un (S (S n))) then Un (S (S n)) else if Rle_lt_dec (Vn n) (Un (S n)) then Un (S n) else Vn n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Vn n <= Un (S n)

Un (S n) <= (if Rle_lt_dec (Un (S n)) (Un (S (S n))) then Un (S (S n)) else Un (S n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Un (S n) < Vn n
Vn n <= (if Rle_lt_dec (Vn n) (Un (S (S n))) then Un (S (S n)) else Vn n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Vn n <= Un (S n)
H2:Un (S n) <= Un (S (S n))

Un (S n) <= Un (S (S n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Vn n <= Un (S n)
H2:Un (S (S n)) < Un (S n)
Un (S n) <= Un (S n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Un (S n) < Vn n
Vn n <= (if Rle_lt_dec (Vn n) (Un (S (S n))) then Un (S (S n)) else Vn n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Vn n <= Un (S n)
H2:Un (S (S n)) < Un (S n)

Un (S n) <= Un (S n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Un (S n) < Vn n
Vn n <= (if Rle_lt_dec (Vn n) (Un (S (S n))) then Un (S (S n)) else Vn n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Un (S n) < Vn n

Vn n <= (if Rle_lt_dec (Vn n) (Un (S (S n))) then Un (S (S n)) else Vn n)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Un (S n) < Vn n
H2:Vn n <= Un (S (S n))

Vn n <= Un (S (S n))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Un (S n) < Vn n
H2:Un (S (S n)) < Vn n
Vn n <= Vn n
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
n:nat
IHn:Vn n <= Vn (S n)
H1:Un (S n) < Vn n
H2:Un (S (S n)) < Vn n

Vn n <= Vn n
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn

forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l

forall eps : R, 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l

forall eps : R, 0 < eps -> exists k : nat, Rabs ((let (a, _) := ub_to_lub Un pr in a) - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'

forall eps : R, 0 < eps -> exists k : nat, Rabs (l' - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'

forall eps : R, 0 < eps -> exists k : nat, Rabs (l - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l = l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
eps:R
Heps:0 < eps

exists k : nat, Rabs (l - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l = l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
eps:R
Heps:0 < eps
n:nat
Hn:forall n0 : nat, (n0 >= n)%nat -> R_dist (Vn n0) l < eps

exists k : nat, Rabs (l - Un k) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l = l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
eps:R
Heps:0 < eps
n:nat
Hn:forall n0 : nat, (n0 >= n)%nat -> R_dist (Vn n0) l < eps

Rabs (l - Un (In n)) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l = l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
eps:R
Heps:0 < eps
n:nat
Hn:forall n0 : nat, (n0 >= n)%nat -> R_dist (Vn n0) l < eps

Rabs (l - Vn n) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l = l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
eps:R
Heps:0 < eps
n:nat
Hn:forall n0 : nat, (n0 >= n)%nat -> R_dist (Vn n0) l < eps

Rabs (Vn n - l) < eps
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l = l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
eps:R
Heps:0 < eps
n:nat
Hn:forall n0 : nat, (n0 >= n)%nat -> R_dist (Vn n0) l < eps

(n >= n)%nat
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l = l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'

l = l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'

l <= l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l' <= l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'

is_upper_bound (EUn Vn) l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l' <= l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Vn k

n <= l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l' <= l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Vn k

Un (In k) <= l'
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l' <= l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Vn k

EUn Un (Un (In k))
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
l' <= l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'

l' <= l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
In:=fix aux (n : nat) : nat := match n with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n) (Un n) then n else aux n' end:nat -> nat
VUI:forall n : nat, Vn n = Un (In n)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'

is_upper_bound (EUn Un) l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k

n <= l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k

Un k <= l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k

Un k <= Vn k
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k
Vn k <= l
Un:nat -> R
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
k:nat

Un k <= Vn k
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k
Vn k <= l
Un:nat -> R
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R

Un 0%nat <= Vn 0%nat
Un:nat -> R
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
k:nat
IHk:Un k <= Vn k
Un (S k) <= Vn (S k)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k
Vn k <= l
Un:nat -> R
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
k:nat
IHk:Un k <= Vn k

Un (S k) <= Vn (S k)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k
Vn k <= l
Un:nat -> R
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
k:nat
IHk:Un k <= Vn k

Un (S k) <= (if Rle_lt_dec (Vn k) (Un (S k)) then Un (S k) else Vn k)
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k
Vn k <= l
Un:nat -> R
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
k:nat
IHk:Un k <= Vn k
H:Vn k <= Un (S k)

Un (S k) <= Un (S k)
Un:nat -> R
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
k:nat
IHk:Un k <= Vn k
H:Un (S k) < Vn k
Un (S k) <= Vn k
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k
Vn k <= l
Un:nat -> R
Vn:=fix aux (n : nat) : R := match n with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n) then Un n else aux n' end:nat -> R
k:nat
IHk:Un k <= Vn k
H:Un (S k) < Vn k

Un (S k) <= Vn k
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k
Vn k <= l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k

Vn k <= l
Un:nat -> R
pr:has_ub Un
Vn:=fix aux (n0 : nat) : R := match n0 with | 0%nat => Un 0%nat | S n' => if Rle_lt_dec (aux n') (Un n0) then Un n0 else aux n' end:nat -> R
In:=fix aux (n0 : nat) : nat := match n0 with | 0%nat => 0%nat | S n' => if Rle_lt_dec (Vn n0) (Un n0) then n0 else aux n' end:nat -> nat
VUI:forall n0 : nat, Vn n0 = Un (In n0)
HubV:has_ub Vn
HgrV:Un_growing Vn
l:R
Hl:is_lub (EUn Vn) l
l':R
Hl':is_lub (EUn Un) l'
n:R
k:nat
Hk:n = Un k

EUn Vn (Vn k)
now exists k. Qed. (**********)

forall (Un : nat -> R) (pr : has_lb Un) (eps : R), 0 < eps -> exists k : nat, Rabs (glb Un pr - Un k) < eps

forall (Un : nat -> R) (pr : has_lb Un) (eps : R), 0 < eps -> exists k : nat, Rabs (glb Un pr - Un k) < eps
Un:nat -> R
pr:has_lb Un

forall eps : R, 0 < eps -> exists k : nat, Rabs (glb Un pr - Un k) < eps
Un:nat -> R
pr:has_lb Un

forall eps : R, 0 < eps -> exists k : nat, Rabs ((let (a, _) := lb_to_glb Un pr in - a) - Un k) < eps
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb

forall eps : R, 0 < eps -> exists k : nat, Rabs (- lb - Un k) < eps
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps

exists k : nat, Rabs (- lb - Un k) < eps
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps

exists k : nat, Rabs (- lb - Un k) < eps
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps

Rabs (- lb - Un n) < eps
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps

Rabs (- lb + - Un n) < eps
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps

Rabs (lb + Un n) < eps
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps

Rabs (lub (opp_seq Un) pr + Un n) < eps
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps
lub (opp_seq Un) pr = lb
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps

lub (opp_seq Un) pr = lb
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps

(let (a, _) := ub_to_lub (opp_seq Un) pr in a) = lb
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps
ub:R
Hub:is_lub (EUn (opp_seq Un)) ub

ub = lb
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps
ub:R
Hub:is_lub (EUn (opp_seq Un)) ub

ub <= lb
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps
ub:R
Hub:is_lub (EUn (opp_seq Un)) ub
lb <= ub
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps
ub:R
Hub:is_lub (EUn (opp_seq Un)) ub

is_upper_bound (EUn (opp_seq Un)) lb
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps
ub:R
Hub:is_lub (EUn (opp_seq Un)) ub
lb <= ub
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps
ub:R
Hub:is_lub (EUn (opp_seq Un)) ub

lb <= ub
Un:nat -> R
pr:has_lb Un
lb:R
Hlb:is_lub (EUn (opp_seq Un)) lb
eps:R
Heps:0 < eps
n:nat
Hn:Rabs (lub (opp_seq Un) pr - opp_seq Un n) < eps
ub:R
Hub:is_lub (EUn (opp_seq Un)) ub

is_upper_bound (EUn (opp_seq Un)) ub
apply Hub. Qed.
Unicity of limit for convergent sequences

forall (Un : nat -> R) (l1 l2 : R), Un_cv Un l1 -> Un_cv Un l2 -> l1 = l2

forall (Un : nat -> R) (l1 l2 : R), Un_cv Un l1 -> Un_cv Un l2 -> l1 = l2
Un:nat -> R
l1, l2:R
H:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l1) < eps
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l2) < eps

l1 = l2
Un:nat -> R
l1, l2:R
H:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l1) < eps
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l2) < eps

forall eps : R, 0 < eps -> Rabs (l1 - l2) < eps
Un:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l2) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2

Rabs (l1 - l2) < eps
Un:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l2) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2

Rabs (l1 - l2) < eps
Un:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l2) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2
x0:nat
H4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2

Rabs (l1 - l2) < eps
Un:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2
x0:nat
H4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2
N:=Nat.max x x0:nat

Rabs (l1 - l2) < eps
Un:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2
x0:nat
H4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2
N:=Nat.max x x0:nat

Rabs (l1 - l2) <= Rabs (l1 - Un N) + Rabs (Un N - l2)
Un:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2
x0:nat
H4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2
N:=Nat.max x x0:nat
Rabs (l1 - Un N) + Rabs (Un N - l2) < eps
Un:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2
x0:nat
H4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2
N:=Nat.max x x0:nat

Rabs (l1 - Un N) + Rabs (Un N - l2) < eps
Un:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2
x0:nat
H4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2
N:=Nat.max x x0:nat

Rabs (l1 - Un N) < eps / 2
Un:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2
x0:nat
H4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2
N:=Nat.max x x0:nat
Rabs (Un N - l2) < eps / 2
Un:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l2) < eps0
eps:R
H1:0 < eps
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < eps / 2
x0:nat
H4:forall n : nat, (n >= x0)%nat -> Rabs (Un n - l2) < eps / 2
N:=Nat.max x x0:nat

Rabs (Un N - l2) < eps / 2
apply H4; unfold ge, N; apply le_max_r. Qed. (**********)

forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i + Bn i) (l1 + l2)

forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i + Bn i) (l1 + l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0
eps:R
H1:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n + Bn n - (l1 + l2)) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n + Bn n - (l1 + l2)) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (An n - l1) < eps / 2

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n + Bn n - (l1 + l2)) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (An n - l1) < eps / 2
x0:nat
H4:forall n : nat, (n >= x0)%nat -> Rabs (Bn n - l2) < eps / 2

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n + Bn n - (l1 + l2)) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (An n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Bn n - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n : nat, (n >= x)%nat -> Rabs (An n - l1) < eps / 2
x0:nat
H4:forall n : nat, (n >= x0)%nat -> Rabs (Bn n - l2) < eps / 2
N:=Nat.max x x0:nat

exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (An n + Bn n - (l1 + l2)) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2
x0:nat
H4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2
N:=Nat.max x x0:nat
n:nat
H5:(n >= N)%nat

Rabs (An n + Bn n - (l1 + l2)) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2
x0:nat
H4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2
N:=Nat.max x x0:nat
n:nat
H5:(n >= N)%nat

Rabs (An n - l1 + (Bn n - l2)) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2
x0:nat
H4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2
N:=Nat.max x x0:nat
n:nat
H5:(n >= N)%nat

Rabs (An n - l1 + (Bn n - l2)) <= Rabs (An n - l1) + Rabs (Bn n - l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2
x0:nat
H4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2
N:=Nat.max x x0:nat
n:nat
H5:(n >= N)%nat
Rabs (An n - l1) + Rabs (Bn n - l2) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2
x0:nat
H4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2
N:=Nat.max x x0:nat
n:nat
H5:(n >= N)%nat

Rabs (An n - l1) + Rabs (Bn n - l2) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2
x0:nat
H4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2
N:=Nat.max x x0:nat
n:nat
H5:(n >= N)%nat

Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2
x0:nat
H4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2
N:=Nat.max x x0:nat
n:nat
H5:(n >= N)%nat
Rabs (Bn n - l2) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
eps:R
H1:eps > 0
H2:0 < eps / 2
x:nat
H3:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l1) < eps / 2
x0:nat
H4:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Bn n0 - l2) < eps / 2
N:=Nat.max x x0:nat
n:nat
H5:(n >= N)%nat

Rabs (Bn n - l2) < eps / 2
apply H4; unfold ge; apply le_trans with N; [ unfold N; apply le_max_r | assumption ]. Qed. (**********)

forall (Un : nat -> R) (l : R), Un_cv Un l -> Un_cv (fun i : nat => Rabs (Un i)) (Rabs l)

forall (Un : nat -> R) (l : R), Un_cv Un l -> Un_cv (fun i : nat => Rabs (Un i)) (Rabs l)
Un:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l) < eps0
eps:R
H0:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs (Un n) - Rabs l) < eps
Un:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n : nat, (n >= x)%nat -> Rabs (Un n - l) < eps

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs (Un n) - Rabs l) < eps
Un:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n0 : nat, (n0 >= x)%nat -> Rabs (Un n0 - l) < eps
n:nat
H2:(n >= x)%nat

Rabs (Rabs (Un n) - Rabs l) < eps
Un:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n0 : nat, (n0 >= x)%nat -> Rabs (Un n0 - l) < eps
n:nat
H2:(n >= x)%nat

Rabs (Rabs (Un n) - Rabs l) <= Rabs (Un n - l)
Un:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n0 : nat, (n0 >= x)%nat -> Rabs (Un n0 - l) < eps
n:nat
H2:(n >= x)%nat
Rabs (Un n - l) < eps
Un:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n0 : nat, (n0 >= x)%nat -> Rabs (Un n0 - l) < eps
n:nat
H2:(n >= x)%nat

Rabs (Un n - l) < eps
apply H1; assumption. Qed. (**********)

forall Un : nat -> R, {l : R | Un_cv Un l} -> Cauchy_crit Un

forall Un : nat -> R, {l : R | Un_cv Un l} -> Cauchy_crit Un
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x

Cauchy_crit Un
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
eps:R
H:eps > 0

exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < eps
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - x) < eps0
eps:R
H:eps > 0

exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < eps
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - x) < eps0
eps:R
H:eps > 0
H0:0 < eps / 2

exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < eps
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - x) < eps0
eps:R
H:eps > 0
H0:0 < eps / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Un n - x) < eps / 2

exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (Un n) (Un m) < eps
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0
eps:R
H:eps > 0
H0:0 < eps / 2
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2
n, m:nat
H2:(n >= x0)%nat
H3:(m >= x0)%nat

R_dist (Un n) (Un m) < eps
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0
eps:R
H:eps > 0
H0:0 < eps / 2
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2
n, m:nat
H2:(n >= x0)%nat
H3:(m >= x0)%nat

Rabs (Un n - Un m) <= Rabs (Un n - x) + Rabs (x - Un m)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0
eps:R
H:eps > 0
H0:0 < eps / 2
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2
n, m:nat
H2:(n >= x0)%nat
H3:(m >= x0)%nat
Rabs (Un n - x) + Rabs (x - Un m) < eps
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0
eps:R
H:eps > 0
H0:0 < eps / 2
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2
n, m:nat
H2:(n >= x0)%nat
H3:(m >= x0)%nat

Rabs (Un n - x) + Rabs (x - Un m) < eps
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0
eps:R
H:eps > 0
H0:0 < eps / 2
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2
n, m:nat
H2:(n >= x0)%nat
H3:(m >= x0)%nat

Rabs (Un n - x) < eps / 2
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0
eps:R
H:eps > 0
H0:0 < eps / 2
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2
n, m:nat
H2:(n >= x0)%nat
H3:(m >= x0)%nat
Rabs (x - Un m) < eps / 2
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - x) < eps0
eps:R
H:eps > 0
H0:0 < eps / 2
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Un n0 - x) < eps / 2
n, m:nat
H2:(n >= x0)%nat
H3:(m >= x0)%nat

Rabs (x - Un m) < eps / 2
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H1; assumption. Qed. (**********)

forall Un : nat -> R, {l : R | Un_cv Un l} -> exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)

forall Un : nat -> R, {l : R | Un_cv Un l} -> exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x

exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x

{l : R | Un_cv (fun k : nat => Rabs (Un k)) l} -> exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}

exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))

exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))

exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0

exists l : R, 0 < l /\ (forall n : nat, Rabs (Un n) <= l)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0

0 < x0 + 1 /\ (forall n : nat, Rabs (Un n) <= x0 + 1)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0

0 <= x0 -> 0 < x0 + 1 /\ (forall n : nat, Rabs (Un n) <= x0 + 1)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
0 <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
H2:0 <= x0

0 < x0 + 1 /\ (forall n : nat, Rabs (Un n) <= x0 + 1)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
0 <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
H2:0 <= x0

0 < x0 + 1
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
H2:0 <= x0
forall n : nat, Rabs (Un n) <= x0 + 1
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
0 <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
H2:0 <= x0

forall n : nat, Rabs (Un n) <= x0 + 1
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
0 <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
H2:0 <= x0
n:nat

Rabs (Un n) <= x0 + 1
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
0 <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
H2:0 <= x0
n:nat

Rabs (Un n) <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
H2:0 <= x0
n:nat
x0 <= x0 + 1
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
0 <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:forall x1 : R, EUn (fun k : nat => Rabs (Un k)) x1 -> x1 <= x0
H2:0 <= x0
n:nat

Rabs (Un n) <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
H2:0 <= x0
n:nat
x0 <= x0 + 1
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
0 <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:forall x1 : R, EUn (fun k : nat => Rabs (Un k)) x1 -> x1 <= x0
H2:0 <= x0
n:nat

EUn (fun k : nat => Rabs (Un k)) (Rabs (Un n))
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
H2:0 <= x0
n:nat
x0 <= x0 + 1
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
0 <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
H2:0 <= x0
n:nat

x0 <= x0 + 1
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
0 <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0

0 <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0

0 <= Rabs (Un 0%nat)
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0
Rabs (Un 0%nat) <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:is_upper_bound (EUn (fun k : nat => Rabs (Un k))) x0

Rabs (Un 0%nat) <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:forall x1 : R, EUn (fun k : nat => Rabs (Un k)) x1 -> x1 <= x0

Rabs (Un 0%nat) <= x0
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
X0:{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
H:Cauchy_crit (fun k : nat => Rabs (Un k))
H0:bound (EUn (fun k : nat => Rabs (Un k)))
x0:R
H1:forall x1 : R, EUn (fun k : nat => Rabs (Un k)) x1 -> x1 <= x0

EUn (fun k : nat => Rabs (Un k)) (Rabs (Un 0%nat))
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x
{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x

{l : R | Un_cv (fun k : nat => Rabs (Un k)) l}
Un:nat -> R
X:{l : R | Un_cv Un l}
x:R
p:Un_cv Un x

Un_cv (fun k : nat => Rabs (Un k)) (Rabs x)
apply cv_cvabs; assumption. Qed. (**********)

forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i * Bn i) (l1 * l2)

forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i * Bn i) (l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2

Un_cv (fun i : nat => An i * Bn i) (l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2

{l : R | Un_cv An l} -> Un_cv (fun i : nat => An i * Bn i) (l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}

Un_cv (fun i : nat => An i * Bn i) (l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)

Un_cv (fun i : nat => An i * Bn i) (l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)

Un_cv (fun i : nat => An i * Bn i) (l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M

Un_cv (fun i : nat => An i * Bn i) (l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0

0 < eps / (2 * M) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n : nat, (n >= x)%nat -> Rabs (Bn n - l2) < eps / (2 * M)

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (An n * Bn n - l1 * l2) <= Rabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (An n) * Rabs (Bn n - l2) + Rabs (An n * l2 - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (An n) * Rabs (Bn n - l2) + 0 < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (An n) * Rabs (Bn n - l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (An n) * Rabs (Bn n - l2) <= M * Rabs (Bn n - l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M * Rabs (Bn n - l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (Bn n - l2) * Rabs (An n) <= Rabs (Bn n - l2) * M
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M * Rabs (Bn n - l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

0 <= Rabs (Bn n - l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) <= M
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M * Rabs (Bn n - l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (An n) <= M
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M * Rabs (Bn n - l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

M * Rabs (Bn n - l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

0 < / M
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
/ M * (M * Rabs (Bn n - l2)) < / M * eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

/ M * (M * Rabs (Bn n - l2)) < / M * eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

1 * Rabs (Bn n - l2) < / M * eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (Bn n - l2) < eps * / M
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (Bn n - l2) < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
eps / (2 * M) < eps * / M
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

eps / (2 * M) < eps * / M
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

eps * (/ 2 * / M) < eps * / M
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

0 < 2
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 * (eps * (/ 2 * / M)) < 2 * (eps * / M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

2 * (eps * (/ 2 * / M)) < 2 * (eps * / M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

2 * / 2 * (eps * / M) < 2 * (eps * / M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

1 * (eps * / M) < 2 * (eps * / M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

eps * / M < eps * / M + eps * / M
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

eps * / M + 0 < eps * / M + eps * / M
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

2 <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

M <> 0
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

0 = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 = 0
x:nat
H8:forall n0 : nat, (n0 >= x)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
n:nat
H9:(n >= x)%nat

Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * (Bn n - l2))
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0

0 < eps / (2 * Rabs l2) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n : nat, (n >= N1)%nat -> Rabs (An n - l1) < eps / (2 * Rabs l2)

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Bn n - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n : nat, (n >= N1)%nat -> Rabs (An n - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n : nat, (n >= N2)%nat -> Rabs (Bn n - l2) < eps / (2 * M)

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (An n - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Bn n - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n : nat, (n >= N1)%nat -> Rabs (An n - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n : nat, (n >= N2)%nat -> Rabs (Bn n - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat

exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (An n * Bn n - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (An n * Bn n - l1 * l2) <= Rabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (An n * Bn n - An n * l2) + Rabs (An n * l2 - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (An n) * Rabs (Bn n - l2) + Rabs (An n * l2 - l1 * l2) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (An n) * Rabs (Bn n - l2) + Rabs l2 * Rabs (An n - l1) < eps
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (An n) * Rabs (Bn n - l2) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (An n) * Rabs (Bn n - l2) <= M * Rabs (Bn n - l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M * Rabs (Bn n - l2) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (Bn n - l2) * Rabs (An n) <= Rabs (Bn n - l2) * M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M * Rabs (Bn n - l2) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

0 <= Rabs (Bn n - l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) <= M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M * Rabs (Bn n - l2) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (An n) <= M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M * Rabs (Bn n - l2) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

M * Rabs (Bn n - l2) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

0 < / M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
/ M * (M * Rabs (Bn n - l2)) < / M * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

/ M * (M * Rabs (Bn n - l2)) < / M * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

1 * Rabs (Bn n - l2) < / M * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (Bn n - l2) < eps / 2 * / M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (Bn n - l2) < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
eps / (2 * M) <= eps / 2 * / M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

(n >= N2)%nat
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
eps / (2 * M) <= eps / 2 * / M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

(N2 <= N)%nat
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
(N <= n)%nat
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
eps / (2 * M) <= eps / 2 * / M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

(N <= n)%nat
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
eps / (2 * M) <= eps / 2 * / M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

eps / (2 * M) <= eps / 2 * / M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

eps * (/ 2 * / M) <= eps * / 2 * / M
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

M <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs l2 * Rabs (An n - l1) < eps / 2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

0 < / Rabs l2
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
/ Rabs l2 * (Rabs l2 * Rabs (An n - l1)) < / Rabs l2 * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

/ Rabs l2 * (Rabs l2 * Rabs (An n - l1)) < / Rabs l2 * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

1 * Rabs (An n - l1) < / Rabs l2 * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (An n - l1) < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
eps / (2 * Rabs l2) <= / Rabs l2 * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

(n >= N1)%nat
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
eps / (2 * Rabs l2) <= / Rabs l2 * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

(N1 <= N)%nat
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
(N <= n)%nat
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
eps / (2 * Rabs l2) <= / Rabs l2 * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

(N <= n)%nat
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
eps / (2 * Rabs l2) <= / Rabs l2 * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

eps / (2 * Rabs l2) <= / Rabs l2 * (eps / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

eps * (/ 2 * / Rabs l2) = / Rabs l2 * (eps * / 2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs l2 <> 0
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs l2 * Rabs (An n - l1) = Rabs (An n * l2 - l1 * l2)
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat
Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (An n0 - l1) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Bn n0 - l2) < eps0
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n0 : nat, Rabs (An n0) <= l)
M:R
H2:0 < M /\ (forall n0 : nat, Rabs (An n0) <= M)
H3:0 < M
H4:forall n0 : nat, Rabs (An n0) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
H8:0 < eps / (2 * Rabs l2)
N1:nat
H9:forall n0 : nat, (n0 >= N1)%nat -> Rabs (An n0 - l1) < eps / (2 * Rabs l2)
N2:nat
H10:forall n0 : nat, (n0 >= N2)%nat -> Rabs (Bn n0 - l2) < eps / (2 * M)
N:=Nat.max N1 N2:nat
n:nat
H11:(n >= N)%nat

Rabs (An n) * Rabs (Bn n - l2) = Rabs (An n * Bn n - An n * l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0

0 < eps / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0

0 < eps
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0
0 < / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
H6:0 < eps / (2 * M)
H7:l2 <> 0

0 < / (2 * Rabs l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0
0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
X:{l : R | Un_cv An l}
H1:exists l : R, 0 < l /\ (forall n : nat, Rabs (An n) <= l)
M:R
H2:0 < M /\ (forall n : nat, Rabs (An n) <= M)
H3:0 < M
H4:forall n : nat, Rabs (An n) <= M
eps:R
H5:eps > 0

0 < eps / (2 * M)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
{l : R | Un_cv An l}
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2

{l : R | Un_cv An l}
exists l1; assumption. Qed.

forall Un : nat -> R, Un_growing Un -> forall m n : nat, (m <= n)%nat -> Un m <= Un n

forall Un : nat -> R, Un_growing Un -> forall m n : nat, (m <= n)%nat -> Un m <= Un n
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= n)%nat

Un m <= Un n
Un:nat -> R
H:forall n : nat, Un n <= Un (S n)
m:nat
H0:(m <= 0)%nat

Un m <= Un 0%nat
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
Un m <= Un (S n)
Un:nat -> R
H:forall n : nat, Un n <= Un (S n)
H0:(0 <= 0)%nat

Un 0%nat <= Un 0%nat
Un:nat -> R
H:forall n : nat, Un n <= Un (S n)
m:nat
H0:(S m <= 0)%nat
Hrecm:(m <= 0)%nat -> Un m <= Un 0%nat
Un (S m) <= Un 0%nat
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
Un m <= Un (S n)
Un:nat -> R
H:forall n : nat, Un n <= Un (S n)
m:nat
H0:(S m <= 0)%nat
Hrecm:(m <= 0)%nat -> Un m <= Un 0%nat

Un (S m) <= Un 0%nat
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
Un m <= Un (S n)
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n

Un m <= Un (S n)
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n

(m <= n)%nat \/ m = S n -> Un m <= Un (S n)
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
(m <= n)%nat \/ m = S n
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
H1:(m <= n)%nat \/ m = S n
H2:(m <= n)%nat

Un m <= Un (S n)
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
H1:(m <= n)%nat \/ m = S n
H2:m = S n
Un m <= Un (S n)
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
(m <= n)%nat \/ m = S n
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
H1:(m <= n)%nat \/ m = S n
H2:(m <= n)%nat

Un m <= Un n
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
H1:(m <= n)%nat \/ m = S n
H2:(m <= n)%nat
Un n <= Un (S n)
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
H1:(m <= n)%nat \/ m = S n
H2:m = S n
Un m <= Un (S n)
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
(m <= n)%nat \/ m = S n
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
H1:(m <= n)%nat \/ m = S n
H2:(m <= n)%nat

Un n <= Un (S n)
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
H1:(m <= n)%nat \/ m = S n
H2:m = S n
Un m <= Un (S n)
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
(m <= n)%nat \/ m = S n
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
H1:(m <= n)%nat \/ m = S n
H2:m = S n

Un m <= Un (S n)
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
(m <= n)%nat \/ m = S n
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n

(m <= n)%nat \/ m = S n
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
H1:m = S n

(S n <= n)%nat \/ S n = S n
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
m0:nat
H2:(m <= n)%nat
H1:m0 = n
(m <= n)%nat \/ m = S n
Un:nat -> R
H:forall n0 : nat, Un n0 <= Un (S n0)
m, n:nat
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un m <= Un n
m0:nat
H2:(m <= n)%nat
H1:m0 = n

(m <= n)%nat \/ m = S n
left; assumption. Qed.

forall (An : nat -> R) (k : R), 0 <= k < 1 -> Un_cv (fun n : nat => Rabs (An (S n) / An n)) k -> exists k0 : R, k < k0 < 1 /\ (exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k0)

forall (An : nat -> R) (k : R), 0 <= k < 1 -> Un_cv (fun n : nat => Rabs (An (S n) / An n)) k -> exists k0 : R, k < k0 < 1 /\ (exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k0)
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

k < k + (1 - k) / 2 < 1 /\ (exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2)
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

k < k + (1 - k) / 2 < 1
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

k < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
k + (1 - k) / 2 < 1
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

0 < (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
k + (1 - k) / 2 < 1
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

0 < 1 - k
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
0 < / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
k + (1 - k) / 2 < 1
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

0 < / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
k + (1 - k) / 2 < 1
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

k + (1 - k) / 2 < 1
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

0 < 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
2 * (k + (1 - k) / 2) < 2 * 1
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

2 * (k + (1 - k) / 2) < 2 * 1
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

1 + k < 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
H1:0 <= k
H2:k < 1

1 + k < 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k
exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:Un_cv (fun n : nat => Rabs (An (S n) / An n)) k

exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps

0 < (1 - k) / 2 -> exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps
0 < (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps
H1:0 < (1 - k) / 2
x:nat
H2:forall n : nat, (n >= x)%nat -> R_dist (Rabs (An (S n) / An n)) k < (1 - k) / 2

exists N : nat, forall n : nat, (N <= n)%nat -> Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps
0 < (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < eps
H1:0 < (1 - k) / 2
x:nat
H2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2
n:nat
H3:(x <= n)%nat

Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps
0 < (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < eps
H1:0 < (1 - k) / 2
x:nat
H2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2
n:nat
H3:(x <= n)%nat
H4:R_dist (Rabs (An (S n) / An n)) k < (1 - k) / 2

Rabs (An (S n) / An n) < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps
0 < (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < eps
H1:0 < (1 - k) / 2
x:nat
H2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2
n:nat
H3:(x <= n)%nat
H4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2

Rabs (Rabs (An (S n) / An n) - k + k) <= Rabs (Rabs (An (S n) / An n) - k) + Rabs k
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < eps
H1:0 < (1 - k) / 2
x:nat
H2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2
n:nat
H3:(x <= n)%nat
H4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2
Rabs (Rabs (An (S n) / An n) - k) + Rabs k < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps
0 < (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < eps
H1:0 < (1 - k) / 2
x:nat
H2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2
n:nat
H3:(x <= n)%nat
H4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2

Rabs (Rabs (An (S n) / An n) - k) + Rabs k < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps
0 < (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < eps
H1:0 < (1 - k) / 2
x:nat
H2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2
n:nat
H3:(x <= n)%nat
H4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2

Rabs (Rabs (An (S n) / An n) - k) + k < k + (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < eps
H1:0 < (1 - k) / 2
x:nat
H2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2
n:nat
H3:(x <= n)%nat
H4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2
k >= 0
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps
0 < (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < eps
H1:0 < (1 - k) / 2
x:nat
H2:forall n0 : nat, (n0 >= x)%nat -> R_dist (Rabs (An (S n0) / An n0)) k < (1 - k) / 2
n:nat
H3:(x <= n)%nat
H4:Rabs (Rabs (An (S n) / An n) - k) < (1 - k) / 2

k >= 0
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps
0 < (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps

0 < (1 - k) / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps

0 < 1 - k
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps
0 < / 2
An:nat -> R
k:R
H:0 <= k < 1
H0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (An (S n) / An n)) k < eps

0 < / 2
apply Rinv_0_lt_compat; prove_sup0. Qed. (**********)

forall (Un : nat -> R) (l : R), Un_growing Un -> Un_cv Un l -> forall n : nat, Un n <= l

forall (Un : nat -> R) (l : R), Un_growing Un -> Un_cv Un l -> forall n : nat, Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hlt:Un n < l

Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Heq:Un n = l
Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Heq:Un n = l

Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l

Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l

0 < Un n - l -> Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l

Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l

Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat

Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat

Un n - l <= Un N - l -> Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
Un n - l <= Un N - l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
H3:Un n - l <= Un N - l

Un N - l < Un n - l -> Un n <= l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
H3:Un n - l <= Un N - l
Un N - l < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
Un n - l <= Un N - l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
H3:Un n - l <= Un N - l

Un N - l < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
Un n - l <= Un N - l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
H3:Un n - l <= Un N - l

Un N - l <= Rabs (Un N - l)
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
H3:Un n - l <= Un N - l
Rabs (Un N - l) < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
Un n - l <= Un N - l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
H3:Un n - l <= Un N - l

Rabs (Un N - l) < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
Un n - l <= Un N - l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
H3:Un n - l <= Un N - l

(N >= N1)%nat
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
Un n - l <= Un N - l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat

Un n - l <= Un N - l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat

Un n <= Un N
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat

Un_growing Un
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat
(n <= N)%nat
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:forall eps : R, eps > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps
n:nat
Hgt:Un n > l
H1:0 < Un n - l
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Un n0 - l) < Un n - l
N:=Nat.max n N1:nat

(n <= N)%nat
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l
0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l

0 < Un n - l
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l

l + 0 < l + (Un n - l)
Un:nat -> R
l:R
H:Un_growing Un
H0:Un_cv Un l
n:nat
Hgt:Un n > l

l < l + (Un n - l)
replace (l + (Un n - l)) with (Un n); [ assumption | ring ]. Qed.
Un->l => (-Un) -> (-l)

forall (An : nat -> R) (l : R), Un_cv An l -> Un_cv (opp_seq An) (- l)

forall (An : nat -> R) (l : R), Un_cv An l -> Un_cv (opp_seq An) (- l)
An:nat -> R
l:R

Un_cv An l -> Un_cv (opp_seq An) (- l)
An:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l) < eps0
eps:R
H0:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (opp_seq An n - - l) < eps
An:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - l) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n : nat, (n >= x)%nat -> Rabs (An n - l) < eps

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (opp_seq An n - - l) < eps
An:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (An n0 - l) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l) < eps
n:nat
H2:(n >= x)%nat

Rabs (opp_seq An n - - l) < eps
An:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (An n0 - l) < eps0
eps:R
H0:eps > 0
x:nat
H1:forall n0 : nat, (n0 >= x)%nat -> Rabs (An n0 - l) < eps
n:nat
H2:(n >= x)%nat

Rabs (An n - l) < eps
apply H1; assumption. Qed. (**********)

forall (Un : nat -> R) (l : R), Un_decreasing Un -> Un_cv Un l -> forall n : nat, l <= Un n

forall (Un : nat -> R) (l : R), Un_decreasing Un -> Un_cv Un l -> forall n : nat, l <= Un n
Un:nat -> R
l:R
H:Un_decreasing Un
H0:Un_cv Un l
n:nat

l <= Un n
Un:nat -> R
l:R
H:Un_decreasing Un
H0:Un_cv Un l
n:nat
H1:Un_growing (opp_seq Un)

l <= Un n
Un:nat -> R
l:R
H:Un_decreasing Un
H0:Un_cv Un l
n:nat
H1:Un_growing (opp_seq Un)
H2:Un_cv (opp_seq Un) (- l)

l <= Un n
Un:nat -> R
l:R
H:Un_decreasing Un
H0:Un_cv Un l
n:nat
H1:Un_growing (opp_seq Un)
H2:Un_cv (opp_seq Un) (- l)
H3:forall n0 : nat, opp_seq Un n0 <= - l

l <= Un n
Un:nat -> R
l:R
H:Un_decreasing Un
H0:Un_cv Un l
n:nat
H1:Un_growing (opp_seq Un)
H2:Un_cv (opp_seq Un) (- l)
H3:forall n0 : nat, opp_seq Un n0 <= - l

- Un n <= - l
unfold opp_seq in H3; apply H3. Qed. (**********)

forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i - Bn i) (l1 - l2)

forall (An Bn : nat -> R) (l1 l2 : R), Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i : nat => An i - Bn i) (l1 - l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2

Un_cv (fun i : nat => An i - Bn i) (l1 - l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2

Un_cv (fun i : nat => An i + opp_seq Bn i) (l1 - l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
(fun i : nat => An i + opp_seq Bn i) = (fun i : nat => An i - Bn i)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2

Un_cv An l1
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
Un_cv (opp_seq Bn) (- l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
(fun i : nat => An i + opp_seq Bn i) = (fun i : nat => An i - Bn i)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2

Un_cv (opp_seq Bn) (- l2)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2
(fun i : nat => An i + opp_seq Bn i) = (fun i : nat => An i - Bn i)
An, Bn:nat -> R
l1, l2:R
H:Un_cv An l1
H0:Un_cv Bn l2

(fun i : nat => An i + opp_seq Bn i) = (fun i : nat => An i - Bn i)
unfold Rminus, opp_seq; reflexivity. Qed.
Un -> +oo
Definition cv_infty (Un:nat -> R) : Prop :=
  forall M:R,  exists N : nat, (forall n:nat, (N <= n)%nat -> M < Un n).
Un -> +oo => /Un -> O

forall Un : nat -> R, (forall n : nat, Un n <> 0) -> cv_infty Un -> Un_cv (fun n : nat => / Un n) 0

forall Un : nat -> R, (forall n : nat, Un n <> 0) -> cv_infty Un -> Un_cv (fun n : nat => / Un n) 0
Un:nat -> R
H:forall n : nat, Un n <> 0
H0:forall M : R, exists N : nat, forall n : nat, (N <= n)%nat -> M < Un n
eps:R
H1:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ Un n - 0) < eps
Un:nat -> R
H:forall n : nat, Un n <> 0
H0:forall M : R, exists N : nat, forall n : nat, (N <= n)%nat -> M < Un n
eps:R
H1:eps > 0
N0:nat
H2:forall n : nat, (N0 <= n)%nat -> / eps < Un n

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ Un n - 0) < eps
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

Rabs (/ Un n - 0) < eps
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

/ Rabs (Un n) < eps
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

0 < Rabs (Un n)
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
Rabs (Un n) * / Rabs (Un n) < Rabs (Un n) * eps
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

Rabs (Un n) * / Rabs (Un n) < Rabs (Un n) * eps
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

1 < Rabs (Un n) * eps
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
Rabs (Un n) <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

0 < / eps
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
/ eps * 1 < / eps * (Rabs (Un n) * eps)
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
Rabs (Un n) <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

/ eps * 1 < / eps * (Rabs (Un n) * eps)
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
Rabs (Un n) <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

/ eps < Rabs (Un n) * 1
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
eps <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
Rabs (Un n) <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

/ eps < Un n
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
Un n <= Rabs (Un n)
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
eps <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
Rabs (Un n) <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

Un n <= Rabs (Un n)
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
eps <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
Rabs (Un n) <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

eps <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat
Rabs (Un n) <> 0
Un:nat -> R
H:forall n0 : nat, Un n0 <> 0
H0:forall M : R, exists N : nat, forall n0 : nat, (N <= n0)%nat -> M < Un n0
eps:R
H1:eps > 0
N0:nat
H2:forall n0 : nat, (N0 <= n0)%nat -> / eps < Un n0
n:nat
H3:(n >= N0)%nat

Rabs (Un n) <> 0
apply Rabs_no_R0; apply H. Qed. (**********)

forall (Un : nat -> R) (m n : nat), Un_decreasing Un -> (m <= n)%nat -> Un n <= Un m

forall (Un : nat -> R) (m n : nat), Un_decreasing Un -> (m <= n)%nat -> Un n <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= n)%nat

Un n <= Un m
Un:nat -> R
m:nat
H:forall n : nat, Un (S n) <= Un n
H0:(m <= 0)%nat

Un 0%nat <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
Un (S n) <= Un m
Un:nat -> R
H:forall n : nat, Un (S n) <= Un n
H0:(0 <= 0)%nat

Un 0%nat <= Un 0%nat
Un:nat -> R
m:nat
H:forall n : nat, Un (S n) <= Un n
H0:(S m <= 0)%nat
Hrecm:(m <= 0)%nat -> Un 0%nat <= Un m
Un 0%nat <= Un (S m)
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
Un (S n) <= Un m
Un:nat -> R
m:nat
H:forall n : nat, Un (S n) <= Un n
H0:(S m <= 0)%nat
Hrecm:(m <= 0)%nat -> Un 0%nat <= Un m

Un 0%nat <= Un (S m)
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
Un (S n) <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m

Un (S n) <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m

(m <= n)%nat \/ m = S n -> Un (S n) <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
(m <= n)%nat \/ m = S n
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
H1:(m <= n)%nat \/ m = S n
H2:(m <= n)%nat

Un (S n) <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
H1:(m <= n)%nat \/ m = S n
H2:m = S n
Un (S n) <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
(m <= n)%nat \/ m = S n
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
H1:(m <= n)%nat \/ m = S n
H2:(m <= n)%nat

Un (S n) <= Un n
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
H1:(m <= n)%nat \/ m = S n
H2:(m <= n)%nat
Un n <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
H1:(m <= n)%nat \/ m = S n
H2:m = S n
Un (S n) <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
(m <= n)%nat \/ m = S n
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
H1:(m <= n)%nat \/ m = S n
H2:(m <= n)%nat

Un n <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
H1:(m <= n)%nat \/ m = S n
H2:m = S n
Un (S n) <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
(m <= n)%nat \/ m = S n
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
H1:(m <= n)%nat \/ m = S n
H2:m = S n

Un (S n) <= Un m
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m
(m <= n)%nat \/ m = S n
Un:nat -> R
m, n:nat
H:forall n0 : nat, Un (S n0) <= Un n0
H0:(m <= S n)%nat
Hrecn:(m <= n)%nat -> Un n <= Un m

(m <= n)%nat \/ m = S n
inversion H0; [ right; reflexivity | left; assumption ]. Qed.
|x|^n/n! -> 0

forall x : R, Un_cv (fun n : nat => x ^ n / INR (fact n)) 0

forall x : R, Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R

(Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0) -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0

Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x = 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x = 0
n:nat
H2:(n >= 1)%nat

Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z

(0 <= M)%Z -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - 0) < eps0
N:nat
H6:forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps

exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat

(exists p : nat, (p >= N)%nat /\ n = (M_nat + p)%nat) -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat
exists p : nat, (p >= N)%nat /\ n = (M_nat + p)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat
H8:exists p0 : nat, (p0 >= N)%nat /\ n = (M_nat + p0)%nat
p:nat
H9:(p >= N)%nat /\ n = (M_nat + p)%nat

Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat
exists p : nat, (p >= N)%nat /\ n = (M_nat + p)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat

exists p : nat, (p >= N)%nat /\ n = (M_nat + p)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat

(n - M_nat >= N)%nat /\ n = (M_nat + (n - M_nat))%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat

(n - M_nat >= N)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat
n = (M_nat + (n - M_nat))%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat

(M_nat + N <= n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat
(M_nat <= n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat
n = (M_nat + (n - M_nat))%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat

(M_nat <= n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat
n = (M_nat + (n - M_nat))%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat

(M_nat <= M_nat + N)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat
(M_nat + N <= n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat
n = (M_nat + (n - M_nat))%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat

(M_nat + N <= n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat
n = (M_nat + (n - M_nat))%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
H5:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - 0) < eps0
N:nat
H6:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - 0) < eps
n:nat
H7:(n >= M_nat + N)%nat

n = (M_nat + (n - M_nat))%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R

(1 <= M_nat)%nat -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat

(forall n : nat, 0 < Un n) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n

Un_decreasing Un -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un

(forall n : nat, Un (S n) <= Vn n) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n

Un_cv Vn 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Vn n - 0) < eps1

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Vn n - 0) < eps1
N1:nat
H11:forall n : nat, (n >= N1)%nat -> Rabs (Vn n - 0) < eps0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat

Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat

(forall n0 : nat, 0 < Vn n0) -> Rabs (Un n - 0) < eps0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
forall n0 : nat, 0 < Vn n0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0

Rabs (Un n - 0) <= Rabs (Vn (Init.Nat.pred n) - 0)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Rabs (Vn (Init.Nat.pred n) - 0) < eps0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
forall n0 : nat, 0 < Vn n0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0

Un n - 0 <= Vn (Init.Nat.pred n) - 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Vn (Init.Nat.pred n) - 0 >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Un n - 0 >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Rabs (Vn (Init.Nat.pred n) - 0) < eps0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
forall n0 : nat, 0 < Vn n0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0

Un (S (Init.Nat.pred n)) <= Vn (Init.Nat.pred (S (Init.Nat.pred n)))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
S (Init.Nat.pred n) = n
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Vn (Init.Nat.pred n) - 0 >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Un n - 0 >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Rabs (Vn (Init.Nat.pred n) - 0) < eps0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
forall n0 : nat, 0 < Vn n0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0

S (Init.Nat.pred n) = n
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Vn (Init.Nat.pred n) - 0 >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Un n - 0 >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Rabs (Vn (Init.Nat.pred n) - 0) < eps0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
forall n0 : nat, 0 < Vn n0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0

Vn (Init.Nat.pred n) - 0 >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Un n - 0 >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Rabs (Vn (Init.Nat.pred n) - 0) < eps0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
forall n0 : nat, 0 < Vn n0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0

Un n - 0 >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0
Rabs (Vn (Init.Nat.pred n) - 0) < eps0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
forall n0 : nat, 0 < Vn n0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
H13:forall n0 : nat, 0 < Vn n0

Rabs (Vn (Init.Nat.pred n) - 0) < eps0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat
forall n0 : nat, 0 < Vn n0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Vn n0 - 0) < eps1
N1:nat
H11:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Vn n0 - 0) < eps0
n:nat
H12:(n >= S N1)%nat

forall n0 : nat, 0 < Vn n0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n

Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n

cv_infty (fun n : nat => INR (S n)) -> Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))

Un_cv (fun n : nat => / INR (S n)) 0 -> Un_cv Vn 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x * (Un 0%nat / INR (S n)) - 0) < eps1
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0

0 < eps1 / (Rabs x * Un 0%nat) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x * (Un 0%nat / INR (S n)) - 0) < eps1
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps1 / (Rabs x * Un 0%nat)

exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Rabs x * (Un 0%nat / INR (S n)) - 0) < eps1
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

Rabs (Rabs x * Un 0%nat * (/ INR (S n) - 0)) < eps1
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

0 < / Rabs (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
/ Rabs (Rabs x * Un 0%nat) * (Rabs (Rabs x * Un 0%nat) * Rabs (/ INR (S n) - 0)) < / Rabs (Rabs x * Un 0%nat) * eps1
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

Rabs x * Un 0%nat <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
/ Rabs (Rabs x * Un 0%nat) * (Rabs (Rabs x * Un 0%nat) * Rabs (/ INR (S n) - 0)) < / Rabs (Rabs x * Un 0%nat) * eps1
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

Rabs x <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
Un 0%nat <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
/ Rabs (Rabs x * Un 0%nat) * (Rabs (Rabs x * Un 0%nat) * Rabs (/ INR (S n) - 0)) < / Rabs (Rabs x * Un 0%nat) * eps1
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

Un 0%nat <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
/ Rabs (Rabs x * Un 0%nat) * (Rabs (Rabs x * Un 0%nat) * Rabs (/ INR (S n) - 0)) < / Rabs (Rabs x * Un 0%nat) * eps1
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

/ Rabs (Rabs x * Un 0%nat) * (Rabs (Rabs x * Un 0%nat) * Rabs (/ INR (S n) - 0)) < / Rabs (Rabs x * Un 0%nat) * eps1
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

1 * Rabs (/ INR (S n) - 0) < / Rabs (Rabs x * Un 0%nat) * eps1
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
Rabs (Rabs x * Un 0%nat) <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

Rabs (/ INR (S n) - 0) < / Rabs (Rabs x * Un 0%nat) * eps1
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
Rabs (Rabs x * Un 0%nat) <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

Rabs (/ INR (S n) - 0) < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
eps1 / (Rabs x * Un 0%nat) = / Rabs (Rabs x * Un 0%nat) * eps1
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
Rabs (Rabs x * Un 0%nat) <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

eps1 / (Rabs x * Un 0%nat) = / Rabs (Rabs x * Un 0%nat) * eps1
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
Rabs (Rabs x * Un 0%nat) <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

eps1 * / (Rabs x * Un 0%nat) = / (Rabs x * Un 0%nat) * eps1
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
Rabs x * Un 0%nat >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
Rabs (Rabs x * Un 0%nat) <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

Rabs x * Un 0%nat >= 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
Rabs (Rabs x * Un 0%nat) <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

0 <= Rabs x
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
0 <= Un 0%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
Rabs (Rabs x * Un 0%nat) <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

0 <= Un 0%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat
Rabs (Rabs x * Un 0%nat) <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

Rabs (Rabs x * Un 0%nat) <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
H10:cv_infty (fun n0 : nat => INR (S n0))
H11:forall eps2 : R, eps2 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ INR (S n0) - 0) < eps2
eps1:R
H12:eps1 > 0
H13:0 < eps1 / (Rabs x * Un 0%nat)
N:nat
H14:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ INR (S n0) - 0) < eps1 / (Rabs x * Un 0%nat)
n:nat
H15:(n >= N)%nat

Rabs x * Un 0%nat <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0

0 < eps1 / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0

0 < eps1
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0

0 < / (Rabs x * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0

0 < Rabs x
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0
0 < Un 0%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
H11:forall eps2 : R, eps2 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ INR (S n) - 0) < eps2
eps1:R
H12:eps1 > 0

0 < Un 0%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))

Un_cv (fun n : nat => / INR (S n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))

forall n : nat, INR (S n) <> 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
H10:cv_infty (fun n : nat => INR (S n))

cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n

cv_infty (fun n : nat => INR (S n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hlt:M0 < 0

exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Heq:M0 = 0
exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
M0:R
Hlt:M0 < 0
n:nat
H10:(0 <= n)%nat

M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Heq:M0 = 0
exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Heq:M0 = 0

exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0

exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z

exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1

exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1

(0 <= M0_z)%Z -> exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
(0 <= M0_z)%Z
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
H11:(0 <= M0_z)%Z
M0_nat:nat
H12:M0_z = Z.of_nat M0_nat

exists N : nat, forall n : nat, (N <= n)%nat -> M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
(0 <= M0_z)%Z
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
H11:(0 <= M0_z)%Z
M0_nat:nat
H12:M0_z = Z.of_nat M0_nat
n:nat
H13:(M0_nat <= n)%nat

M0 < INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
(0 <= M0_z)%Z
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
H11:(0 <= M0_z)%Z
M0_nat:nat
H12:M0_z = Z.of_nat M0_nat
n:nat
H13:(M0_nat <= n)%nat

M0 < IZR M0_z
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
H11:(0 <= M0_z)%Z
M0_nat:nat
H12:M0_z = Z.of_nat M0_nat
n:nat
H13:(M0_nat <= n)%nat
IZR M0_z <= INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
(0 <= M0_z)%Z
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
H11:(0 <= M0_z)%Z
M0_nat:nat
H12:M0_z = Z.of_nat M0_nat
n:nat
H13:(M0_nat <= n)%nat

IZR M0_z <= INR (S n)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
(0 <= M0_z)%Z
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
H9:forall n0 : nat, Un (S n0) <= Vn n0
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
H11:(0 <= M0_z)%Z
M0_nat:nat
H12:M0_z = Z.of_nat M0_nat
n:nat
H13:(M0_nat <= n)%nat

(M0_nat <= S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1
(0 <= M0_z)%Z
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
H9:forall n : nat, Un (S n) <= Vn n
M0:R
Hgt:M0 > 0
M0_z:=up M0:Z
H10:IZR (up M0) > M0 /\ IZR (up M0) - M0 <= 1

(0 <= M0_z)%Z
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un
forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
H8:Un_decreasing Un

forall n : nat, Un (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

Un (S n) <= Rabs x * Un n * / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

Rabs x ^ (M_nat + n + 1) / INR (fact (M_nat + n + 1)) <= Rabs x * (Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))) * / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

Rabs x ^ (M_nat + n) * Rabs x / INR (fact (M_nat + n + 1)) <= Rabs x * (Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))) * / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

0 <= Rabs x
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
0 <= Rabs x ^ (M_nat + n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
/ INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n)) * / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

0 <= Rabs x ^ (M_nat + n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
/ INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n)) * / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

/ INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n)) * / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

/ INR (fact (S (M_nat + n))) <= / INR (fact (M_nat + n)) * / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

/ INR (fact (M_nat + n)) * / INR (S (M_nat + n)) <= / INR (fact (M_nat + n)) * / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (S (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

0 <= / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
/ INR (S (M_nat + n)) <= / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (S (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

/ INR (S (M_nat + n)) <= / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (S (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

0 < INR (S n) * INR (S (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (S n) < INR (S (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (S (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

INR (S n) < INR (S (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (S (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

(n < M_nat + n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (S (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

(0 + n < M_nat + n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (S (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

(0 < M_nat)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (S (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
INR (S (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

INR (S (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

Rabs x * Un n * / INR (S n) <= Vn n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

Rabs x * (/ INR (S n) * Un n) <= Rabs x * (/ INR (S n) * Un 0%nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

0 <= Rabs x
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
0 <= / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Un n <= Un 0%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

0 <= / INR (S n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat
Un n <= Un 0%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
H8:Un_decreasing Un
n:nat

Un n <= Un 0%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n
Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n : nat, 0 < Un n

Un_decreasing Un
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

Rabs x ^ (M_nat + S n) / INR (fact (M_nat + S n)) <= Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

Rabs x ^ (M_nat + n + 1) / INR (fact (M_nat + n + 1)) <= Rabs x ^ (M_nat + n) / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

0 <= Rabs x ^ (M_nat + n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
Rabs x ^ 1 * / INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

Rabs x ^ 1 * / INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

Rabs x * / INR (fact (M_nat + n + 1)) <= / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

Rabs x * / INR (fact (S (M_nat + n))) <= / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

0 < INR (fact (S (M_nat + n)))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (S (M_nat + n))) * (Rabs x * / INR (fact (S (M_nat + n)))) <= INR (fact (S (M_nat + n))) * / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

INR (fact (S (M_nat + n))) * (Rabs x * / INR (fact (S (M_nat + n)))) <= INR (fact (S (M_nat + n))) * / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

1 * Rabs x <= INR (fact (S (M_nat + n))) * / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (S (M_nat + n))) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

Rabs x <= INR (fact (S (M_nat + n))) * / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (S (M_nat + n))) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

Rabs x <= INR (S (M_nat + n)) * 1
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (S (M_nat + n))) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

Rabs x <= INR M_nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR M_nat <= INR (S (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (S (M_nat + n))) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

Rabs x < IZR (Z.of_nat M_nat)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR M_nat <= INR (S (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (S (M_nat + n))) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

INR M_nat <= INR (S (M_nat + n))
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (S (M_nat + n))) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

INR (fact (M_nat + n)) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
INR (fact (S (M_nat + n))) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

INR (fact (S (M_nat + n))) <> 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

S (M_nat + n) = (M_nat + n + 1)%nat
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat
(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
H7:forall n0 : nat, 0 < Un n0
n:nat

(M_nat + n + 1)%nat = (M_nat + S n)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat
forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
H6:(1 <= M_nat)%nat

forall n : nat, 0 < Un n
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
n:nat

0 < Rabs x ^ (M_nat + n)
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
n:nat
0 < / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n0 : nat => Rabs x ^ n0 / INR (fact n0)) 0 -> Un_cv (fun n0 : nat => x ^ n0 / INR (fact n0)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n0 : nat => Rabs x ^ (M_nat + n0) / INR (fact (M_nat + n0)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n0 : nat => Rabs x * (Un 0%nat / INR (S n0)):nat -> R
H6:(1 <= M_nat)%nat
n:nat

0 < / INR (fact (M_nat + n))
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R
(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
Un:=fun n : nat => Rabs x ^ (M_nat + n) / INR (fact (M_nat + n)):nat -> R
eps0:R
H5:eps0 > 0
Vn:=fun n : nat => Rabs x * (Un 0%nat / INR (S n)):nat -> R

(1 <= M_nat)%nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat M_nat
eps0:R
H5:eps0 > 0

1 <= INR M_nat
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
H4:M = Z.of_nat 0
eps0:R
H5:eps0 > 0

1 <= INR 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat (S M_nat)
eps0:R
H5:eps0 > 0
HrecM_nat:M = Z.of_nat M_nat -> 1 <= INR M_nat
1 <= INR (S M_nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
H4:M = Z.of_nat 0
eps0:R
H5:eps0 > 0
H6:IZR M > Rabs x /\ IZR M - Rabs x <= 1
H7:IZR M > Rabs x
H8:IZR M - Rabs x <= 1

1 <= INR 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat (S M_nat)
eps0:R
H5:eps0 > 0
HrecM_nat:M = Z.of_nat M_nat -> 1 <= INR M_nat
1 <= INR (S M_nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
H4:M = Z.of_nat 0
eps0:R
H5:eps0 > 0
H6:IZR M > Rabs x /\ IZR M - Rabs x <= 1
H7:INR 0 > Rabs x
H8:IZR M - Rabs x <= 1

1 <= INR 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat (S M_nat)
eps0:R
H5:eps0 > 0
HrecM_nat:M = Z.of_nat M_nat -> 1 <= INR M_nat
1 <= INR (S M_nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
H3:(0 <= M)%Z
M_nat:nat
H4:M = Z.of_nat (S M_nat)
eps0:R
H5:eps0 > 0
HrecM_nat:M = Z.of_nat M_nat -> 1 <= INR M_nat

1 <= INR (S M_nat)
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z

(0 <= M)%Z
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z

0 < Rabs x
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z
Rabs x < IZR M
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
eps:R
H0:eps > 0
H1:x <> 0
H2:0 < Rabs x
M:=up (Rabs x):Z

Rabs x < IZR M
x:R
Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R

Un_cv (fun n : nat => Rabs x ^ n / INR (fact n)) 0 -> Un_cv (fun n : nat => x ^ n / INR (fact n)) 0
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Rabs x ^ n / INR (fact n) - 0) < eps

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat

Rabs (x ^ n / INR (fact n) - 0) <= Rabs (Rabs x ^ n / INR (fact n) - 0)
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat

Rabs (x ^ n / INR (fact n)) <= Rabs x ^ n / INR (fact n)
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs x ^ n / INR (fact n) >= 0
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat

Rabs (x ^ n) * / INR (fact n) <= Rabs x ^ n * / INR (fact n)
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
/ INR (fact n) >= 0
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs x ^ n / INR (fact n) >= 0
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat

/ INR (fact n) >= 0
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs x ^ n / INR (fact n) >= 0
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat

Rabs x ^ n / INR (fact n) >= 0
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat

0 <= Rabs x ^ n
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
0 <= / INR (fact n)
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
H3:x = 0

0 <= Rabs x ^ n
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
H3:x <> 0
0 <= Rabs x ^ n
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
0 <= / INR (fact n)
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
H3:x = 0

0 <= 0 ^ n
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
H3:x <> 0
0 <= Rabs x ^ n
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
0 <= / INR (fact n)
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
H3:x <> 0

0 <= Rabs x ^ n
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
0 <= / INR (fact n)
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat

0 <= / INR (fact n)
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat
Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
x:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> Rabs (Rabs x ^ n0 / INR (fact n0) - 0) < eps
n:nat
H2:(n >= x0)%nat

Rabs (Rabs x ^ n / INR (fact n) - 0) < eps
apply H1; assumption. Qed.