Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import Max.
Require Export Rseries.
Require Export SeqProp.
Require Export Rcomplete.
Require Export PartSum.
Require Export AltSeries.
Require Export Binomial.
Require Export Rsigma.
Require Export Rprod.
Require Export Cauchy_prod.
Require Export Alembert.
Local Open Scope R_scope.

(**********)

forall (fn : nat -> R -> R) (An : nat -> R) (x l1 l2 : R) (N : nat), Un_cv (fun n : nat => SP fn n x) l1 -> Un_cv (fun n : nat => sum_f_R0 An n) l2 -> (forall n : nat, Rabs (fn n x) <= An n) -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N

forall (fn : nat -> R -> R) (An : nat -> R) (x l1 l2 : R) (N : nat), Un_cv (fun n : nat => SP fn n x) l1 -> Un_cv (fun n : nat => sum_f_R0 An n) l2 -> (forall n : nat, Rabs (fn n x) <= An n) -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l} -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l} -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N

Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N

Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N

l1 - SP fn N x = l1N -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N

l2 - sum_f_R0 An N = l2N -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
l2 - sum_f_R0 An N = l2N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
H5:l2 - sum_f_R0 An N = l2N

Rabs l1N <= l2N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
l2 - sum_f_R0 An N = l2N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
H5:l2 - sum_f_R0 An N = l2N

Un_cv (fun n : nat => SP (fun (l : nat) (x0 : R) => fn (S N + l)%nat x0) n x) l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
H5:l2 - sum_f_R0 An N = l2N
Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
H5:l2 - sum_f_R0 An N = l2N
forall n : nat, Rabs (fn (S N + n)%nat x) <= An (S N + n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
l2 - sum_f_R0 An N = l2N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
H5:l2 - sum_f_R0 An N = l2N

Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
H5:l2 - sum_f_R0 An N = l2N
forall n : nat, Rabs (fn (S N + n)%nat x) <= An (S N + n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
l2 - sum_f_R0 An N = l2N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
H5:l2 - sum_f_R0 An N = l2N

forall n : nat, Rabs (fn (S N + n)%nat x) <= An (S N + n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
l2 - sum_f_R0 An N = l2N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N

l2 - sum_f_R0 An N = l2N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N

Un_cv ?Un l2N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
Un_cv ?Un (l2 - sum_f_R0 An N)
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N

Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N)
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l2 < eps0
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < eps

exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

R_dist (sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

Rabs (sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n - l2) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

Rabs (sum_f_R0 An (S (N + n)) - l2) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

(N0 <= n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

(n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

(n <= N + n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N + n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

(N + n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

(0 <= N)%nat -> sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

(N < S (N + n))%nat -> (0 <= N)%nat -> sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sigma An 0 (S (N + n)) = sigma An 0 N + sigma An (S N) (S (N + n))

sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n) - 0) = sum_f_R0 (fun k : nat => An (0 + k)%nat) (N - 0) + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

(S (N + n) - S N)%nat = n -> sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) n
H11:(S (N + n) - S N)%nat = n

sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

INR (S (N + n)) - INR (S N) = INR n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
(S N <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

(S N <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
i:nat
H11:(i <= N)%nat

An (0 + i)%nat = An i
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
H8:(N < S (N + n))%nat
H9:(0 <= N)%nat
H10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
i:nat
H11:(i <= S (N + n))%nat

An (0 + i)%nat = An i
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
H4:l1 - SP fn N x = l1N
eps:R
H5:eps > 0
N0:nat
H6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H7:(n >= N0)%nat

(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N

l1 - SP fn N x = l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N

Un_cv ?Un l1N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
Un_cv ?Un (l1 - SP fn N x)
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N

Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x)
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < eps0
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
eps:R
H4:eps > 0

exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (SP fn n x) l1 < eps0
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
l1N:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1N
l2N:R
H3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < eps

exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat

R_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat

Rabs (sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n - l1) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat

Rabs (sum_f_R0 (fun k : nat => fn k x) (S (N + n)) - l1) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H6:(n >= N0)%nat

(N0 <= n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H6:(n >= N0)%nat
(n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H6:(n >= N0)%nat

(n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H6:(n >= N0)%nat

(n <= N + n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H6:(n >= N0)%nat
(N + n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H6:(n >= N0)%nat

(N + n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat

sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat

(0 <= N)%nat -> sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat

(N < S (N + n))%nat -> (0 <= N)%nat -> sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sigma (fun k : nat => fn k x) 0 (S (N + n)) = sigma (fun k : nat => fn k x) 0 N + sigma (fun k : nat => fn k x) (S N) (S (N + n))

sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n) - 0) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (N - 0) + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

(S (N + n) - S N)%nat = n -> sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) n
H10:(S (N + n) - S N)%nat = n

sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

INR (S (N + n)) - INR (S N) = INR n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
(S N <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

(S N <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
i:nat
H10:(i <= N)%nat

fn (0 + i)%nat x = fn i x
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
H7:(N < S (N + n))%nat
H8:(0 <= N)%nat
H9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
i:nat
H10:(i <= S (N + n))%nat

fn (0 + i)%nat x = fn i x
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat

(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat

(N <= N + n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}
l1N:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1N
l2N:R
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2N
eps:R
H4:eps > 0
N0:nat
H5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H6:(n >= N0)%nat

(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}

Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N)
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < eps0
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
eps:R
H2:eps > 0

exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l2 < eps0
H1:forall n : nat, Rabs (fn n x) <= An n
X:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < eps

exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

R_dist (sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

Rabs (sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n - l2) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

Rabs (sum_f_R0 An (S (N + n)) - l2) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

(N0 <= n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

(n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

(n <= N + n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N + n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

(N + n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

(0 <= N)%nat -> sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

(N < S (N + n))%nat -> (0 <= N)%nat -> sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sigma An 0 (S (N + n)) = sigma An 0 N + sigma An (S N) (S (N + n))

sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n) - 0) = sum_f_R0 (fun k : nat => An (0 + k)%nat) (N - 0) + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

(S (N + n) - S N)%nat = n -> sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) n
H8:(S (N + n) - S N)%nat = n

sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

INR (S (N + n)) - INR (S N) = INR n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
(S N <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

(S N <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
i:nat
H8:(i <= N)%nat

An (0 + i)%nat = An i
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)

sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)
i:nat
H8:(i <= S (N + n))%nat

An (0 + i)%nat = An i
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

(N <= N + n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n0 : nat => SP fn n0 x) l1
H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < eps
n:nat
H4:(n >= N0)%nat

(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:Un_cv (fun n : nat => SP fn n x) l1
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n

Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x)
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < eps0
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
eps:R
H2:eps > 0

exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (SP fn n x) l1 < eps0
H0:Un_cv (fun n : nat => sum_f_R0 An n) l2
H1:forall n : nat, Rabs (fn n x) <= An n
eps:R
H2:eps > 0
N0:nat
H3:forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < eps

exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat

R_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat

Rabs (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n - (l1 - sum_f_R0 (fun k : nat => fn k x) N)) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat

Rabs (sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n - l1) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat

Rabs (sum_f_R0 (fun k : nat => fn k x) (S (N + n)) - l1) < eps
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H4:(n >= N0)%nat

(S (N + n) >= N0)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H4:(n >= N0)%nat

(N0 <= n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H4:(n >= N0)%nat
(n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H4:(n >= N0)%nat

(n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H4:(n >= N0)%nat

(n <= N + n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H4:(n >= N0)%nat
(N + n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < eps
n:nat
H4:(n >= N0)%nat

(N + n <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat

sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat

(0 <= N)%nat -> sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat

(N < S (N + n))%nat -> (0 <= N)%nat -> sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sigma (fun k : nat => fn k x) 0 (S (N + n)) = sigma (fun k : nat => fn k x) 0 N + sigma (fun k : nat => fn k x) (S N) (S (N + n))

sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n) - 0) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (N - 0) + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

(S (N + n) - S N)%nat = n -> sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) n
H8:(S (N + n) - S N)%nat = n

sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

(S (N + n) - S N)%nat = n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

INR (S (N + n)) - INR (S N) = INR n
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
(S N <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

(S N <= S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) N
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
i:nat
H8:(i <= N)%nat

fn (0 + i)%nat x = fn i x
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)

sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
H5:(N < S (N + n))%nat
H6:(0 <= N)%nat
H7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)
i:nat
H8:(i <= S (N + n))%nat

fn (0 + i)%nat x = fn i x
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat

(N < S (N + n))%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat

(N <= N + n)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat
(0 <= N)%nat
fn:nat -> R -> R
An:nat -> R
x, l1, l2:R
N:nat
H:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2
H1:forall n0 : nat, Rabs (fn n0 x) <= An n0
eps:R
H2:eps > 0
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < eps
n:nat
H4:(n >= N0)%nat

(0 <= N)%nat
apply le_O_n. Qed.
Comparaison of convergence for series

forall An Bn : nat -> R, (forall n : nat, 0 <= An n <= Bn n) -> {l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l} -> {l : R | Un_cv (fun N : nat => sum_f_R0 An N) l}

forall An Bn : nat -> R, (forall n : nat, 0 <= An n <= Bn n) -> {l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l} -> {l : R | Un_cv (fun N : nat => sum_f_R0 An N) l}
An, Bn:nat -> R
H:forall n : nat, 0 <= An n <= Bn n
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}

Cauchy_crit_series An
An, Bn:nat -> R
H:forall n : nat, 0 <= An n <= Bn n
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn

Cauchy_crit_series An
An, Bn:nat -> R
H:forall n : nat, 0 <= An n <= Bn n
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn

forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < eps
An, Bn:nat -> R
H:forall n : nat, 0 <= An n <= Bn n
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n m : nat, (n >= x)%nat -> (m >= x)%nat -> R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m) < eps

exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < eps
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat

R_dist (sum_f_R0 An n) (sum_f_R0 An m) < eps
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat

R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m) -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < eps
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
H5:R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)

R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
H5:R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m) < eps
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
H5:R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)

R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m) < eps
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat

R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat

R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n : nat, 0 <= An n <= Bn n
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m0) < eps
m:nat
H3, H4:(m >= x)%nat
R_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn m) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat

R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat

R_dist (sum_f_R0 An n) (sum_f_R0 An n + sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat

R_dist (sum_f_R0 An n) (sum_f_R0 An n + sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn n + sum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n))
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat

sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) <= sum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
sum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n1 : nat, 0 <= An n1 <= Bn n1
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
n0:nat
H5:(n0 <= m - S n)%nat

An (S n + n0)%nat <= Bn (S n + n0)%nat
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
sum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n1 : nat, 0 <= An n1 <= Bn n1
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
n0:nat
H5:(n0 <= m - S n)%nat
H7:0 <= An (S n + n0)%nat
H8:An (S n + n0)%nat <= Bn (S n + n0)%nat

An (S n + n0)%nat <= Bn (S n + n0)%nat
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
sum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat

sum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n1 : nat, 0 <= An n1 <= Bn n1
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
n0:nat

0 <= Bn (S n + n0)%nat
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n1 : nat, 0 <= An n1 <= Bn n1
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
n0:nat
H5:0 <= An (S n + n0)%nat
H6:An (S n + n0)%nat <= Bn (S n + n0)%nat

0 <= Bn (S n + n0)%nat
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat

sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0
An, Bn:nat -> R
H:forall n1 : nat, 0 <= An n1 <= Bn n1
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(n < m)%nat
n0:nat

0 <= An (S n + n0)%nat
elim (H (S n + n0)%nat); intros; assumption.
An, Bn:nat -> R
H:forall n : nat, 0 <= An n <= Bn n
X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m0) < eps
m:nat
H3, H4:(m >= x)%nat

R_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn m) (sum_f_R0 Bn m)
unfold R_dist; unfold Rminus; do 2 rewrite Rplus_opp_r; rewrite Rabs_R0; right; reflexivity.
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat

R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat

R_dist (sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat

R_dist (sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn m + sum_f_R0 (fun i : nat => Bn (S m + i)%nat) (n - S m)) (sum_f_R0 Bn m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat

sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) <= sum_f_R0 (fun i : nat => Bn (S m + i)%nat) (n - S m)
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
sum_f_R0 (fun i : nat => Bn (S m + i)%nat) (n - S m) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0
An, Bn:nat -> R
H:forall n1 : nat, 0 <= An n1 <= Bn n1
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
n0:nat
H5:(n0 <= n - S m)%nat

An (S m + n0)%nat <= Bn (S m + n0)%nat
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
sum_f_R0 (fun i : nat => Bn (S m + i)%nat) (n - S m) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat

sum_f_R0 (fun i : nat => Bn (S m + i)%nat) (n - S m) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0
An, Bn:nat -> R
H:forall n1 : nat, 0 <= An n1 <= Bn n1
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
n0:nat

0 <= Bn (S m + n0)%nat
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0
An, Bn:nat -> R
H:forall n1 : nat, 0 <= An n1 <= Bn n1
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
n0:nat
H5:0 <= An (S m + n0)%nat
H6:An (S m + n0)%nat <= Bn (S m + n0)%nat

0 <= Bn (S m + n0)%nat
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat

sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0
An, Bn:nat -> R
H:forall n0 : nat, 0 <= An n0 <= Bn n0
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat

0 <= sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)
An, Bn:nat -> R
H:forall n1 : nat, 0 <= An n1 <= Bn n1
X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
H0:Cauchy_crit_series Bn
eps:R
H1:eps > 0
x:nat
H2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < eps
n, m:nat
H3:(n >= x)%nat
H4:(m >= x)%nat
l:(m < n)%nat
n0:nat

0 <= An (S m + n0)%nat
elim (H (S m + n0)%nat); intros; assumption. Qed.
Cesaro's theorem

forall (An Bn : nat -> R) (l : R), Un_cv Bn l -> (forall n : nat, 0 < An n) -> cv_infty (fun n : nat => sum_f_R0 An n) -> Un_cv (fun n : nat => sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l

forall (An Bn : nat -> R) (l : R), Un_cv Bn l -> (forall n : nat, 0 < An n) -> cv_infty (fun n : nat => sum_f_R0 An n) -> Un_cv (fun n : nat => sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0

forall n : nat, 0 < sum_f_R0 An n
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n

forall n : nat, sum_f_R0 An n <> 0
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0

0 < eps / 2
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0

0 < / 2
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R

exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C = 0

exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C = 0
n:nat
H8:(0 <= n)%nat

C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C = 0
n:nat
H8:(0 <= n)%nat

0 < / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0

exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0

0 < eps / (2 * Rabs C)
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0

0 < / (2 * Rabs C)
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0

0 < 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
0 < Rabs C
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0

0 < Rabs C
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)

exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

C / sum_f_R0 An n < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

C / sum_f_R0 An n <= Rabs (C / sum_f_R0 An n)
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)
Rabs (C / sum_f_R0 An n) < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

Rabs (C / sum_f_R0 An n) < eps / 2
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

0 < / Rabs C
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)
/ Rabs C * (Rabs C * Rabs (/ sum_f_R0 An n)) < / Rabs C * (eps * / 2)
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

/ Rabs C * (Rabs C * Rabs (/ sum_f_R0 An n)) < / Rabs C * (eps * / 2)
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

1 * Rabs (/ sum_f_R0 An n) < / Rabs C * (eps * / 2)
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)
Rabs C <> 0
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

eps / (2 * Rabs C) = / Rabs C * (eps * / 2)
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)
Rabs C <> 0
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

eps * (/ 2 * / Rabs C) = / Rabs C * (eps * / 2)
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)
2 <> 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)
Rabs C <> 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)
Rabs C <> 0
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

2 <> 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)
Rabs C <> 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)
Rabs C <> 0
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

Rabs C <> 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)
Rabs C <> 0
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:C <> 0
H8:0 < eps / (2 * Rabs C)
x:nat
H9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)
n:nat
H10:(x <= n)%nat
H11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)

Rabs C <> 0
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n : nat, 0 < An n
H1:cv_infty (fun n : nat => sum_f_R0 An n)
eps:R
H2:eps > 0
H3:forall n : nat, 0 < sum_f_R0 An n
H4:forall n : nat, sum_f_R0 An n <> 0
H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0
H6:0 < eps / 2
N1:nat
H:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
H7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat

Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n) < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat

(N1 < n)%nat
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n) < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat

(N1 < S N)%nat
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n) < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n) < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1 * / sum_f_R0 An n + sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) * / sum_f_R0 An n) <= Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) + Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n)
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) + Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) + Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) < eps / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

C * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

(N2 <= S N)%nat
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1)) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1)) * / sum_f_R0 An n <= sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

0 <= / sum_f_R0 An n
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1)) <= sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1)
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1)) <= sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1)
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n <= sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

0 <= / sum_f_R0 An n
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) <= sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1)
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) <= sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1)
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n1 : nat, 0 < An n1
H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)
eps:R
H2:eps > 0
H3:forall n1 : nat, 0 < sum_f_R0 An n1
H4:forall n1 : nat, sum_f_R0 An n1 <> 0
H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0
H6:0 < eps / 2
N1:nat
H:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
n0:nat
H10:(n0 <= n - S N1)%nat

Rabs (An (S N1 + n0)%nat) * Rabs (Bn (S N1 + n0)%nat - l) <= Rabs (An (S N1 + n0)%nat) * (eps / 2)
An, Bn:nat -> R
l:R
H0:forall n1 : nat, 0 < An n1
H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)
eps:R
H2:eps > 0
H3:forall n1 : nat, 0 < sum_f_R0 An n1
H4:forall n1 : nat, sum_f_R0 An n1 <> 0
H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0
H6:0 < eps / 2
N1:nat
H:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
n0:nat
H10:(n0 <= n - S N1)%nat
An (S N1 + n0)%nat >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n1 : nat, 0 < An n1
H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)
eps:R
H2:eps > 0
H3:forall n1 : nat, 0 < sum_f_R0 An n1
H4:forall n1 : nat, sum_f_R0 An n1 <> 0
H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0
H6:0 < eps / 2
N1:nat
H:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
n0:nat
H10:(n0 <= n - S N1)%nat

0 <= Rabs (An (S N1 + n0)%nat)
An, Bn:nat -> R
l:R
H0:forall n1 : nat, 0 < An n1
H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)
eps:R
H2:eps > 0
H3:forall n1 : nat, 0 < sum_f_R0 An n1
H4:forall n1 : nat, sum_f_R0 An n1 <> 0
H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0
H6:0 < eps / 2
N1:nat
H:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
n0:nat
H10:(n0 <= n - S N1)%nat
Rabs (Bn (S N1 + n0)%nat - l) <= eps / 2
An, Bn:nat -> R
l:R
H0:forall n1 : nat, 0 < An n1
H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)
eps:R
H2:eps > 0
H3:forall n1 : nat, 0 < sum_f_R0 An n1
H4:forall n1 : nat, sum_f_R0 An n1 <> 0
H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0
H6:0 < eps / 2
N1:nat
H:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
n0:nat
H10:(n0 <= n - S N1)%nat
An (S N1 + n0)%nat >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n1 : nat, 0 < An n1
H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)
eps:R
H2:eps > 0
H3:forall n1 : nat, 0 < sum_f_R0 An n1
H4:forall n1 : nat, sum_f_R0 An n1 <> 0
H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0
H6:0 < eps / 2
N1:nat
H:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
n0:nat
H10:(n0 <= n - S N1)%nat

Rabs (Bn (S N1 + n0)%nat - l) <= eps / 2
An, Bn:nat -> R
l:R
H0:forall n1 : nat, 0 < An n1
H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)
eps:R
H2:eps > 0
H3:forall n1 : nat, 0 < sum_f_R0 An n1
H4:forall n1 : nat, sum_f_R0 An n1 <> 0
H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0
H6:0 < eps / 2
N1:nat
H:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
n0:nat
H10:(n0 <= n - S N1)%nat
An (S N1 + n0)%nat >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n1 : nat, 0 < An n1
H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)
eps:R
H2:eps > 0
H3:forall n1 : nat, 0 < sum_f_R0 An n1
H4:forall n1 : nat, sum_f_R0 An n1 <> 0
H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0
H6:0 < eps / 2
N1:nat
H:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
n0:nat
H10:(n0 <= n - S N1)%nat

An (S N1 + n0)%nat >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

/ 2 * (sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1) * / sum_f_R0 An n) < / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

0 < / 2
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1) * / sum_f_R0 An n < 1
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1) * / sum_f_R0 An n < 1
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

sum_f_R0 An n * (/ sum_f_R0 An n * sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1)) < sum_f_R0 An n * 1
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

1 * sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1) < sum_f_R0 An n * 1
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1) < sum_f_R0 An N1 + sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1)
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat
/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
H9:(N1 < n)%nat

/ sum_f_R0 An n >= 0
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat

sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat

(sum_f_R0 (fun k : nat => An k * Bn k) n + sum_f_R0 (fun k : nat => An k * - l) n) / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - l
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat
sum_f_R0 (fun k : nat => An k * Bn k) n + sum_f_R0 (fun k : nat => An k * - l) n = sum_f_R0 (fun k : nat => An k * (Bn k - l)) n
An, Bn:nat -> R
l:R
H0:forall n0 : nat, 0 < An n0
H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)
eps:R
H2:eps > 0
H3:forall n0 : nat, 0 < sum_f_R0 An n0
H4:forall n0 : nat, sum_f_R0 An n0 <> 0
H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0
H6:0 < eps / 2
N1:nat
H:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2
C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):R
N2:nat
H7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2
N:=Nat.max N1 N2:nat
n:nat
H8:(n >= S N)%nat

sum_f_R0 (fun k : nat => An k * Bn k) n + sum_f_R0 (fun k : nat => An k * - l) n = sum_f_R0 (fun k : nat => An k * (Bn k - l)) n
rewrite <- plus_sum; apply sum_eq; intros; ring... Qed.

forall (An : nat -> R) (l : R), Un_cv An l -> Un_cv (fun n : nat => sum_f_R0 An (Init.Nat.pred n) / INR n) l

forall (An : nat -> R) (l : R), Un_cv An l -> Un_cv (fun n : nat => sum_f_R0 An (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R

Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R

forall n : nat, 0 < An n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n

Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n

forall n : nat, 0 < sum_f_R0 An n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n

Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n

cv_infty (fun n : nat => sum_f_R0 An n)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
M:R
Hle:M <= 0

exists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
M:R
Hnle:~ M <= 0
exists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
M:R
Hnle:~ M <= 0

exists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
M:R
Hnle:~ M <= 0

0 < M
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
M:R
Hnle:~ M <= 0
H2:0 < M
exists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
M:R
Hnle:~ M <= 0
H2:0 < M

exists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
M:R
H2:0 < M
m:=up M:Z
H3:IZR (up M) > M
H4:IZR (up M) - M <= 1

(0 <= m)%Z
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
M:R
H2:0 < M
m:=up M:Z
H3:IZR (up M) > M
H4:IZR (up M) - M <= 1
H5:(0 <= m)%Z
exists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
M:R
H2:0 < M
m:=up M:Z
H3:IZR (up M) > M
H4:IZR (up M) - M <= 1
H5:(0 <= m)%Z

exists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
M:R
H2:0 < M
m:=up M:Z
H3:IZR (up M) > M
H4:IZR (up M) - M <= 1
H5:(0 <= m)%Z
x:nat
H6:m = Z.of_nat x
n:nat
H7:(x <= n)%nat

IZR (up M) < INR (S n)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
M:R
H2:0 < M
m:=up M:Z
H3:IZR (up M) > M
H4:IZR (up M) - M <= 1
H5:(0 <= m)%Z
x:nat
H6:m = Z.of_nat x
n:nat
H7:(x <= n)%nat

IZR (up M) <= INR x
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
M:R
H2:0 < M
m:=up M:Z
H3:IZR (up M) > M
H4:IZR (up M) - M <= 1
H5:(0 <= m)%Z
x:nat
H6:m = Z.of_nat x
n:nat
H7:(x <= n)%nat
INR x < INR (S n)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
M:R
H2:0 < M
m:=up M:Z
H3:IZR (up M) > M
H4:IZR (up M) - M <= 1
H5:(0 <= m)%Z
x:nat
H6:m = Z.of_nat x
n:nat
H7:(x <= n)%nat

INR x < INR (S n)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)

Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n : nat, 0 < An n
H1:forall n : nat, 0 < sum_f_R0 An n
H2:cv_infty (fun n : nat => sum_f_R0 An n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l

Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat

Rabs (sum_f_R0 Bn (Init.Nat.pred n) / INR n - l) <= Rabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat
Rabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < eps
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat

sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l = sum_f_R0 Bn (Init.Nat.pred n) / INR n - l
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat
Rabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < eps
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat

sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) = sum_f_R0 Bn (Init.Nat.pred n) / INR n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat
Rabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < eps
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat

sum_f_R0 Bn (Init.Nat.pred n) / sum_f_R0 (fun _ : nat => 1) (Init.Nat.pred n) = sum_f_R0 Bn (Init.Nat.pred n) / INR n
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat
sum_f_R0 Bn (Init.Nat.pred n) = sum_f_R0 (fun k : nat => 1 * Bn k) (Init.Nat.pred n)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat
Rabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < eps
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat

n = S (Init.Nat.pred n)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat
sum_f_R0 Bn (Init.Nat.pred n) = sum_f_R0 (fun k : nat => 1 * Bn k) (Init.Nat.pred n)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat
Rabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < eps
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat

(0 < S x)%nat
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat
sum_f_R0 Bn (Init.Nat.pred n) = sum_f_R0 (fun k : nat => 1 * Bn k) (Init.Nat.pred n)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat
Rabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < eps
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat

sum_f_R0 Bn (Init.Nat.pred n) = sum_f_R0 (fun k : nat => 1 * Bn k) (Init.Nat.pred n)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat
Rabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < eps
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat

Rabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < eps
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat

n = S (Init.Nat.pred n)
Bn:nat -> R
l:R
H:Un_cv Bn l
An:=fun _ : nat => 1:nat -> R
H0:forall n0 : nat, 0 < An n0
H1:forall n0 : nat, 0 < sum_f_R0 An n0
H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0
eps:R
H4:eps > 0
x:nat
H5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < eps
n:nat
H6:(n >= S x)%nat

(0 < S x)%nat
apply lt_O_Sn... Qed.