Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import Max. Require Export Rseries. Require Export SeqProp. Require Export Rcomplete. Require Export PartSum. Require Export AltSeries. Require Export Binomial. Require Export Rsigma. Require Export Rprod. Require Export Cauchy_prod. Require Export Alembert. Local Open Scope R_scope. (**********)forall (fn : nat -> R -> R) (An : nat -> R) (x l1 l2 : R) (N : nat), Un_cv (fun n : nat => SP fn n x) l1 -> Un_cv (fun n : nat => sum_f_R0 An n) l2 -> (forall n : nat, Rabs (fn n x) <= An n) -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An Nforall (fn : nat -> R -> R) (An : nat -> R) (x l1 l2 : R) (N : nat), Un_cv (fun n : nat => SP fn n x) l1 -> Un_cv (fun n : nat => sum_f_R0 An n) l2 -> (forall n : nat, Rabs (fn n x) <= An n) -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l} -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l} -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1NRabs (l1 - SP fn N x) <= l2 - sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NRabs (l1 - SP fn N x) <= l2 - sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1N -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1Nl2 - sum_f_R0 An N = l2N -> Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1Nl2 - sum_f_R0 An N = l2Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1NH5:l2 - sum_f_R0 An N = l2NRabs l1N <= l2Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1Nl2 - sum_f_R0 An N = l2Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1NH5:l2 - sum_f_R0 An N = l2NUn_cv (fun n : nat => SP (fun (l : nat) (x0 : R) => fn (S N + l)%nat x0) n x) l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1NH5:l2 - sum_f_R0 An N = l2NUn_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1NH5:l2 - sum_f_R0 An N = l2Nforall n : nat, Rabs (fn (S N + n)%nat x) <= An (S N + n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1Nl2 - sum_f_R0 An N = l2Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1NH5:l2 - sum_f_R0 An N = l2NUn_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1NH5:l2 - sum_f_R0 An N = l2Nforall n : nat, Rabs (fn (S N + n)%nat x) <= An (S N + n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1Nl2 - sum_f_R0 An N = l2Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1NH5:l2 - sum_f_R0 An N = l2Nforall n : nat, Rabs (fn (S N + n)%nat x) <= An (S N + n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1Nl2 - sum_f_R0 An N = l2Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1Nl2 - sum_f_R0 An N = l2Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1NUn_cv ?Un l2Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1NUn_cv ?Un (l2 - sum_f_R0 An N)fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1NUn_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N)fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l2 < eps0H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsexists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natR_dist (sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natRabs (sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n - l2) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natRabs (sum_f_R0 An (S (N + n)) - l2) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N0 <= n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(n <= N + n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N + n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N + n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%nat -> sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%nat -> (0 <= N)%nat -> sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sigma An 0 (S (N + n)) = sigma An 0 N + sigma An (S N) (S (N + n))sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n) - 0) = sum_f_R0 (fun k : nat => An (0 + k)%nat) (N - 0) + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S (N + n) - S N)%nat = n -> sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) nH11:(S (N + n) - S N)%nat = nsum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)INR (S (N + n)) - INR (S N) = INR nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S N <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S N <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)i:natH11:(i <= N)%natAn (0 + i)%nat = An ifn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%natH8:(N < S (N + n))%natH9:(0 <= N)%natH10:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)i:natH11:(i <= S (N + n))%natAn (0 + i)%nat = An ifn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2NH4:l1 - SP fn N x = l1Neps:RH5:eps > 0N0:natH6:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH7:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Nl1 - SP fn N x = l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NUn_cv ?Un l1Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NUn_cv ?Un (l1 - SP fn N x)fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2NUn_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x)fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < eps0H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Neps:RH4:eps > 0exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (SP fn n x) l1 < eps0H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}l1N:RH2:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) l1Nl2N:RH3:Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) l2Neps:RH4:eps > 0N0:natH5:forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsexists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natR_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natRabs (sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n - l1) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natRabs (sum_f_R0 (fun k : nat => fn k x) (S (N + n)) - l1) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH6:(n >= N0)%nat(N0 <= n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH6:(n >= N0)%nat(n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH6:(n >= N0)%nat(n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH6:(n >= N0)%nat(n <= N + n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH6:(n >= N0)%nat(N + n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH6:(n >= N0)%nat(N + n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%nat -> sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%nat -> (0 <= N)%nat -> sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sigma (fun k : nat => fn k x) 0 (S (N + n)) = sigma (fun k : nat => fn k x) 0 N + sigma (fun k : nat => fn k x) (S N) (S (N + n))sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n) - 0) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (N - 0) + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S (N + n) - S N)%nat = n -> sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) nH10:(S (N + n) - S N)%nat = nsum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)INR (S (N + n)) - INR (S N) = INR nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S N <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S N <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)i:natH10:(i <= N)%natfn (0 + i)%nat x = fn i xfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%natH7:(N < S (N + n))%natH8:(0 <= N)%natH9:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)i:natH10:(i <= S (N + n))%natfn (0 + i)%nat x = fn i xfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(N <= N + n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n0) l}l1N:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n0) l1Nl2N:RH3:Un_cv (fun n0 : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n0) l2Neps:RH4:eps > 0N0:natH5:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH6:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => An (S N + l0)%nat) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}Un_cv (fun n : nat => sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N)fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < eps0H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}eps:RH2:eps > 0exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l2 < eps0H1:forall n : nat, Rabs (fn n x) <= An nX:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}eps:RH2:eps > 0N0:natH3:forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsexists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natR_dist (sum_f_R0 (fun l : nat => An (S N + l)%nat) n) (l2 - sum_f_R0 An N) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natRabs (sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) n - l2) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natRabs (sum_f_R0 An (S (N + n)) - l2) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N0 <= n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(n <= N + n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N + n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N + n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natsum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%nat -> sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%nat -> (0 <= N)%nat -> sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sigma An 0 (S (N + n)) = sigma An 0 N + sigma An (S N) (S (N + n))sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n) - 0) = sum_f_R0 (fun k : nat => An (0 + k)%nat) (N - 0) + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 An (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S (N + n) - S N)%nat = n -> sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) nH8:(S (N + n) - S N)%nat = nsum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun l : nat => An (S N + l)%nat) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)INR (S (N + n)) - INR (S N) = INR nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S N <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)(S N <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) N = sum_f_R0 An Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)i:natH8:(i <= N)%natAn (0 + i)%nat = An ifn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 An (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => An (0 + k)%nat) (S (N + n)) = sum_f_R0 (fun k : nat => An (0 + k)%nat) N + sum_f_R0 (fun k : nat => An (S N + k)%nat) (S (N + n) - S N)i:natH8:(i <= S (N + n))%natAn (0 + i)%nat = An ifn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(N <= N + n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n0 : nat => SP fn n0 x) l1H0:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (sum_f_R0 An n0) l2 < eps0H1:forall n0 : nat, Rabs (fn n0 x) <= An n0X:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n0) l}eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 An n0 - l2) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An n{l : R | Un_cv (fun n : nat => sum_f_R0 (fun l0 : nat => fn (S N + l0)%nat x) n) l}fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nUn_cv (fun n : nat => sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x)fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < eps0H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An neps:RH2:eps > 0exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (SP fn n x) l1 < eps0H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An neps:RH2:eps > 0N0:natH3:forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsexists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natR_dist (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n) (l1 - SP fn N x) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natRabs (sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n - (l1 - sum_f_R0 (fun k : nat => fn k x) N)) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natRabs (sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) n - l1) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natRabs (sum_f_R0 (fun k : nat => fn k x) (S (N + n)) - l1) < epsfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH4:(n >= N0)%nat(S (N + n) >= N0)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH4:(n >= N0)%nat(N0 <= n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH4:(n >= N0)%nat(n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH4:(n >= N0)%nat(n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH4:(n >= N0)%nat(n <= N + n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH4:(n >= N0)%nat(N + n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => fn k x) n0 - l1) < epsn:natH4:(n >= N0)%nat(N + n <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natsum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%nat -> sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%nat -> (0 <= N)%nat -> sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sigma (fun k : nat => fn k x) 0 (S (N + n)) = sigma (fun k : nat => fn k x) 0 N + sigma (fun k : nat => fn k x) (S N) (S (N + n))sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n) - 0) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (N - 0) + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn k x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S (N + n) - S N)%nat = n -> sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) nH8:(S (N + n) - S N)%nat = nsum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun l : nat => fn (S N + l)%nat x) nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S (N + n) - S N)%nat = nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)INR (S (N + n)) - INR (S N) = INR nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S N <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)(S N <= S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N = sum_f_R0 (fun k : nat => fn k x) Nfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)i:natH8:(i <= N)%natfn (0 + i)%nat x = fn i xfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn k x) (S (N + n))fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%natH5:(N < S (N + n))%natH6:(0 <= N)%natH7:sum_f_R0 (fun k : nat => fn (0 + k)%nat x) (S (N + n)) = sum_f_R0 (fun k : nat => fn (0 + k)%nat x) N + sum_f_R0 (fun k : nat => fn (S N + k)%nat x) (S (N + n) - S N)i:natH8:(i <= S (N + n))%natfn (0 + i)%nat x = fn i xfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N < S (N + n))%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(N <= N + n)%natfn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%natapply le_O_n. Qed.fn:nat -> R -> RAn:nat -> Rx, l1, l2:RN:natH:forall eps0 : R, eps0 > 0 -> exists N1 : nat, forall n0 : nat, (n0 >= N1)%nat -> R_dist (SP fn n0 x) l1 < eps0H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) l2H1:forall n0 : nat, Rabs (fn n0 x) <= An n0eps:RH2:eps > 0N0:natH3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (SP fn n0 x - l1) < epsn:natH4:(n >= N0)%nat(0 <= N)%nat
Comparaison of convergence for series
forall An Bn : nat -> R, (forall n : nat, 0 <= An n <= Bn n) -> {l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l} -> {l : R | Un_cv (fun N : nat => sum_f_R0 An N) l}forall An Bn : nat -> R, (forall n : nat, 0 <= An n <= Bn n) -> {l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l} -> {l : R | Un_cv (fun N : nat => sum_f_R0 An N) l}An, Bn:nat -> RH:forall n : nat, 0 <= An n <= Bn nX:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}Cauchy_crit_series AnAn, Bn:nat -> RH:forall n : nat, 0 <= An n <= Bn nX:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series BnCauchy_crit_series AnAn, Bn:nat -> RH:forall n : nat, 0 <= An n <= Bn nX:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bnforall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn, Bn:nat -> RH:forall n : nat, 0 <= An n <= Bn nX:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n m : nat, (n >= x)%nat -> (m >= x)%nat -> R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m) < epsexists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m) -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natH5:R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natH5:R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m) < epsAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natH5:R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m) < epsAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n : nat, 0 <= An n <= Bn nX:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m0) < epsm:natH3, H4:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn m) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natR_dist (sum_f_R0 An n) (sum_f_R0 An n + sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natR_dist (sum_f_R0 An n) (sum_f_R0 An n + sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn n + sum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n))An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) <= sum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0An, Bn:nat -> RH:forall n1 : nat, 0 <= An n1 <= Bn n1X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natn0:natH5:(n0 <= m - S n)%natAn (S n + n0)%nat <= Bn (S n + n0)%natAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0An, Bn:nat -> RH:forall n1 : nat, 0 <= An n1 <= Bn n1X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natn0:natH5:(n0 <= m - S n)%natH7:0 <= An (S n + n0)%natH8:An (S n + n0)%nat <= Bn (S n + n0)%natAn (S n + n0)%nat <= Bn (S n + n0)%natAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => Bn (S n + i)%nat) (m - S n) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0An, Bn:nat -> RH:forall n1 : nat, 0 <= An n1 <= Bn n1X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natn0:nat0 <= Bn (S n + n0)%natAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0An, Bn:nat -> RH:forall n1 : nat, 0 <= An n1 <= Bn n1X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natn0:natH5:0 <= An (S n + n0)%natH6:An (S n + n0)%nat <= Bn (S n + n0)%nat0 <= Bn (S n + n0)%natAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n) >= 0elim (H (S n + n0)%nat); intros; assumption.An, Bn:nat -> RH:forall n1 : nat, 0 <= An n1 <= Bn n1X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(n < m)%natn0:nat0 <= An (S n + n0)%natunfold R_dist; unfold Rminus; do 2 rewrite Rplus_opp_r; rewrite Rabs_R0; right; reflexivity.An, Bn:nat -> RH:forall n : nat, 0 <= An n <= Bn nX:{l : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m0) < epsm:natH3, H4:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn m) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)) (sum_f_R0 An m) <= R_dist (sum_f_R0 Bn m + sum_f_R0 (fun i : nat => Bn (S m + i)%nat) (n - S m)) (sum_f_R0 Bn m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) <= sum_f_R0 (fun i : nat => Bn (S m + i)%nat) (n - S m)An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => Bn (S m + i)%nat) (n - S m) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0An, Bn:nat -> RH:forall n1 : nat, 0 <= An n1 <= Bn n1X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natn0:natH5:(n0 <= n - S m)%natAn (S m + n0)%nat <= Bn (S m + n0)%natAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => Bn (S m + i)%nat) (n - S m) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => Bn (S m + i)%nat) (n - S m) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0An, Bn:nat -> RH:forall n1 : nat, 0 <= An n1 <= Bn n1X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natn0:nat0 <= Bn (S m + n0)%natAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0An, Bn:nat -> RH:forall n1 : nat, 0 <= An n1 <= Bn n1X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natn0:natH5:0 <= An (S m + n0)%natH6:An (S m + n0)%nat <= Bn (S m + n0)%nat0 <= Bn (S m + n0)%natAn, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) >= 0An, Bn:nat -> RH:forall n0 : nat, 0 <= An n0 <= Bn n0X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n0) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%nat0 <= sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)elim (H (S m + n0)%nat); intros; assumption. Qed.An, Bn:nat -> RH:forall n1 : nat, 0 <= An n1 <= Bn n1X:{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}H0:Cauchy_crit_series Bneps:RH1:eps > 0x:natH2:forall n1 m0 : nat, (n1 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 Bn n1) (sum_f_R0 Bn m0) < epsn, m:natH3:(n >= x)%natH4:(m >= x)%natl:(m < n)%natn0:nat0 <= An (S m + n0)%nat
Cesaro's theorem
forall (An Bn : nat -> R) (l : R), Un_cv Bn l -> (forall n : nat, 0 < An n) -> cv_infty (fun n : nat => sum_f_R0 An n) -> Un_cv (fun n : nat => sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) lforall (An Bn : nat -> R) (l : R), Un_cv Bn l -> (forall n : nat, 0 < An n) -> cv_infty (fun n : nat => sum_f_R0 An n) -> Un_cv (fun n : nat => sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) lAn, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0forall n : nat, 0 < sum_f_R0 An nAn, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nforall n : nat, sum_f_R0 An n <> 0An, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 00 < eps / 2An, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 00 < / 2An, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Bn n) l < eps0H0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):Rexists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C = 0exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C = 0n:natH8:(0 <= n)%natC / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C = 0n:natH8:(0 <= n)%nat0 < / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 00 < eps / (2 * Rabs C)An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 00 < / (2 * Rabs C)An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 00 < 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 00 < Rabs CAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 00 < Rabs CAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)C / sum_f_R0 An n < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)C / sum_f_R0 An n <= Rabs (C / sum_f_R0 An n)An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs (C / sum_f_R0 An n) < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs (C / sum_f_R0 An n) < eps / 2An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)0 < / Rabs CAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)/ Rabs C * (Rabs C * Rabs (/ sum_f_R0 An n)) < / Rabs C * (eps * / 2)An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)/ Rabs C * (Rabs C * Rabs (/ sum_f_R0 An n)) < / Rabs C * (eps * / 2)An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)1 * Rabs (/ sum_f_R0 An n) < / Rabs C * (eps * / 2)An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs C <> 0An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)eps / (2 * Rabs C) = / Rabs C * (eps * / 2)An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs C <> 0An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)eps * (/ 2 * / Rabs C) = / Rabs C * (eps * / 2)An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)2 <> 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs C <> 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs C <> 0An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)2 <> 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs C <> 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs C <> 0An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs C <> 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs C <> 0An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:C <> 0H8:0 < eps / (2 * Rabs C)x:natH9:forall n0 : nat, (n0 >= x)%nat -> R_dist (/ sum_f_R0 An n0) 0 < eps / (2 * Rabs C)n:natH10:(x <= n)%natH11:Rabs (/ sum_f_R0 An n) < eps / (2 * Rabs C)Rabs C <> 0An, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n : nat, 0 < An nH1:cv_infty (fun n : nat => sum_f_R0 An n)eps:RH2:eps > 0H3:forall n : nat, 0 < sum_f_R0 An nH4:forall n : nat, sum_f_R0 An n <> 0H5:Un_cv (fun n : nat => / sum_f_R0 An n) 0H6:0 < eps / 2N1:natH:forall n : nat, (n >= N1)%nat -> R_dist (Bn n) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RH7:exists N : nat, forall n : nat, (N <= n)%nat -> C / sum_f_R0 An n < eps / 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) l < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natRabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n) < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%nat(N1 < n)%natAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n) < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%nat(N1 < S N)%natAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n) < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n) < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1 * / sum_f_R0 An n + sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) * / sum_f_R0 An n) <= Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) + Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n)An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) + Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) + Rabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < epsAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1 / sum_f_R0 An n) < eps / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natC * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat(N2 <= S N)%natAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1) / sum_f_R0 An n) < eps / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1)) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1)) * / sum_f_R0 An n <= sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An nAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat0 <= / sum_f_R0 An nAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1)) <= sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1)An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natRabs (sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l)) (n - S N1)) <= sum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1)An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) * / sum_f_R0 An n <= sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An nAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat0 <= / sum_f_R0 An nAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) <= sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1)An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => Rabs (An (S N1 + i)%nat * (Bn (S N1 + i)%nat - l))) (n - S N1) <= sum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1)An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n1 : nat, 0 < An n1H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)eps:RH2:eps > 0H3:forall n1 : nat, 0 < sum_f_R0 An n1H4:forall n1 : nat, sum_f_R0 An n1 <> 0H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0H6:0 < eps / 2N1:natH:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natn0:natH10:(n0 <= n - S N1)%natRabs (An (S N1 + n0)%nat) * Rabs (Bn (S N1 + n0)%nat - l) <= Rabs (An (S N1 + n0)%nat) * (eps / 2)An, Bn:nat -> Rl:RH0:forall n1 : nat, 0 < An n1H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)eps:RH2:eps > 0H3:forall n1 : nat, 0 < sum_f_R0 An n1H4:forall n1 : nat, sum_f_R0 An n1 <> 0H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0H6:0 < eps / 2N1:natH:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natn0:natH10:(n0 <= n - S N1)%natAn (S N1 + n0)%nat >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n1 : nat, 0 < An n1H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)eps:RH2:eps > 0H3:forall n1 : nat, 0 < sum_f_R0 An n1H4:forall n1 : nat, sum_f_R0 An n1 <> 0H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0H6:0 < eps / 2N1:natH:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natn0:natH10:(n0 <= n - S N1)%nat0 <= Rabs (An (S N1 + n0)%nat)An, Bn:nat -> Rl:RH0:forall n1 : nat, 0 < An n1H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)eps:RH2:eps > 0H3:forall n1 : nat, 0 < sum_f_R0 An n1H4:forall n1 : nat, sum_f_R0 An n1 <> 0H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0H6:0 < eps / 2N1:natH:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natn0:natH10:(n0 <= n - S N1)%natRabs (Bn (S N1 + n0)%nat - l) <= eps / 2An, Bn:nat -> Rl:RH0:forall n1 : nat, 0 < An n1H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)eps:RH2:eps > 0H3:forall n1 : nat, 0 < sum_f_R0 An n1H4:forall n1 : nat, sum_f_R0 An n1 <> 0H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0H6:0 < eps / 2N1:natH:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natn0:natH10:(n0 <= n - S N1)%natAn (S N1 + n0)%nat >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n1 : nat, 0 < An n1H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)eps:RH2:eps > 0H3:forall n1 : nat, 0 < sum_f_R0 An n1H4:forall n1 : nat, sum_f_R0 An n1 <> 0H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0H6:0 < eps / 2N1:natH:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natn0:natH10:(n0 <= n - S N1)%natRabs (Bn (S N1 + n0)%nat - l) <= eps / 2An, Bn:nat -> Rl:RH0:forall n1 : nat, 0 < An n1H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)eps:RH2:eps > 0H3:forall n1 : nat, 0 < sum_f_R0 An n1H4:forall n1 : nat, sum_f_R0 An n1 <> 0H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0H6:0 < eps / 2N1:natH:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natn0:natH10:(n0 <= n - S N1)%natAn (S N1 + n0)%nat >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n1 : nat, 0 < An n1H1:cv_infty (fun n1 : nat => sum_f_R0 An n1)eps:RH2:eps > 0H3:forall n1 : nat, 0 < sum_f_R0 An n1H4:forall n1 : nat, sum_f_R0 An n1 <> 0H5:Un_cv (fun n1 : nat => / sum_f_R0 An n1) 0H6:0 < eps / 2N1:natH:forall n1 : nat, (n1 >= N1)%nat -> Rabs (Bn n1 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n1 : nat, (N2 <= n1)%nat -> C / sum_f_R0 An n1 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natn0:natH10:(n0 <= n - S N1)%natAn (S N1 + n0)%nat >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat * (eps / 2)) (n - S N1) * / sum_f_R0 An n < eps * / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ 2 * (sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1) * / sum_f_R0 An n) < / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat0 < / 2An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1) * / sum_f_R0 An n < 1An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1) * / sum_f_R0 An n < 1An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 An n * (/ sum_f_R0 An n * sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1)) < sum_f_R0 An n * 1An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat1 * sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1) < sum_f_R0 An n * 1An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%natsum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1) < sum_f_R0 An N1 + sum_f_R0 (fun i : nat => An (S N1 + i)%nat) (n - S N1)An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> Rabs (Bn n0 - l) < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natH9:(N1 < n)%nat/ sum_f_R0 An n >= 0An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * (Bn k - l)) n / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%nat(sum_f_R0 (fun k : nat => An k * Bn k) n + sum_f_R0 (fun k : nat => An k * - l) n) / sum_f_R0 An n = sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n - lAn, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * Bn k) n + sum_f_R0 (fun k : nat => An k * - l) n = sum_f_R0 (fun k : nat => An k * (Bn k - l)) nrewrite <- plus_sum; apply sum_eq; intros; ring... Qed.An, Bn:nat -> Rl:RH0:forall n0 : nat, 0 < An n0H1:cv_infty (fun n0 : nat => sum_f_R0 An n0)eps:RH2:eps > 0H3:forall n0 : nat, 0 < sum_f_R0 An n0H4:forall n0 : nat, sum_f_R0 An n0 <> 0H5:Un_cv (fun n0 : nat => / sum_f_R0 An n0) 0H6:0 < eps / 2N1:natH:forall n0 : nat, (n0 >= N1)%nat -> R_dist (Bn n0) l < eps / 2C:=Rabs (sum_f_R0 (fun k : nat => An k * (Bn k - l)) N1):RN2:natH7:forall n0 : nat, (N2 <= n0)%nat -> C / sum_f_R0 An n0 < eps / 2N:=Nat.max N1 N2:natn:natH8:(n >= S N)%natsum_f_R0 (fun k : nat => An k * Bn k) n + sum_f_R0 (fun k : nat => An k * - l) n = sum_f_R0 (fun k : nat => An k * (Bn k - l)) nforall (An : nat -> R) (l : R), Un_cv An l -> Un_cv (fun n : nat => sum_f_R0 An (Init.Nat.pred n) / INR n) lforall (An : nat -> R) (l : R), Un_cv An l -> Un_cv (fun n : nat => sum_f_R0 An (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RUn_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> Rforall n : nat, 0 < An nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nUn_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nUn_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nforall n : nat, 0 < sum_f_R0 An nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nUn_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nUn_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An ncv_infty (fun n : nat => sum_f_R0 An n)Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nM:RHle:M <= 0exists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nM:RHnle:~ M <= 0exists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nM:RHnle:~ M <= 0exists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nM:RHnle:~ M <= 00 < MBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nM:RHnle:~ M <= 0H2:0 < Mexists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nM:RHnle:~ M <= 0H2:0 < Mexists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nM:RH2:0 < Mm:=up M:ZH3:IZR (up M) > MH4:IZR (up M) - M <= 1(0 <= m)%ZBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nM:RH2:0 < Mm:=up M:ZH3:IZR (up M) > MH4:IZR (up M) - M <= 1H5:(0 <= m)%Zexists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nM:RH2:0 < Mm:=up M:ZH3:IZR (up M) > MH4:IZR (up M) - M <= 1H5:(0 <= m)%Zexists N : nat, forall n : nat, (N <= n)%nat -> M < sum_f_R0 An nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0M:RH2:0 < Mm:=up M:ZH3:IZR (up M) > MH4:IZR (up M) - M <= 1H5:(0 <= m)%Zx:natH6:m = Z.of_nat xn:natH7:(x <= n)%natIZR (up M) < INR (S n)Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0M:RH2:0 < Mm:=up M:ZH3:IZR (up M) > MH4:IZR (up M) - M <= 1H5:(0 <= m)%Zx:natH6:m = Z.of_nat xn:natH7:(x <= n)%natIZR (up M) <= INR xBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0M:RH2:0 < Mm:=up M:ZH3:IZR (up M) > MH4:IZR (up M) - M <= 1H5:(0 <= m)%Zx:natH6:m = Z.of_nat xn:natH7:(x <= n)%natINR x < INR (S n)Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0M:RH2:0 < Mm:=up M:ZH3:IZR (up M) > MH4:IZR (up M) - M <= 1H5:(0 <= m)%Zx:natH6:m = Z.of_nat xn:natH7:(x <= n)%natINR x < INR (S n)Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)Un_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n : nat, 0 < An nH1:forall n : nat, 0 < sum_f_R0 An nH2:cv_infty (fun n : nat => sum_f_R0 An n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => An k * Bn k) n / sum_f_R0 An n) lUn_cv (fun n : nat => sum_f_R0 Bn (Init.Nat.pred n) / INR n) lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natRabs (sum_f_R0 Bn (Init.Nat.pred n) / INR n - l) <= Rabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l)Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natRabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < epsBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natsum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l = sum_f_R0 Bn (Init.Nat.pred n) / INR n - lBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natRabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < epsBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natsum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) = sum_f_R0 Bn (Init.Nat.pred n) / INR nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natRabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < epsBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natsum_f_R0 Bn (Init.Nat.pred n) / sum_f_R0 (fun _ : nat => 1) (Init.Nat.pred n) = sum_f_R0 Bn (Init.Nat.pred n) / INR nBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natsum_f_R0 Bn (Init.Nat.pred n) = sum_f_R0 (fun k : nat => 1 * Bn k) (Init.Nat.pred n)Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natRabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < epsBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natn = S (Init.Nat.pred n)Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natsum_f_R0 Bn (Init.Nat.pred n) = sum_f_R0 (fun k : nat => 1 * Bn k) (Init.Nat.pred n)Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natRabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < epsBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%nat(0 < S x)%natBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natsum_f_R0 Bn (Init.Nat.pred n) = sum_f_R0 (fun k : nat => 1 * Bn k) (Init.Nat.pred n)Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natRabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < epsBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natsum_f_R0 Bn (Init.Nat.pred n) = sum_f_R0 (fun k : nat => 1 * Bn k) (Init.Nat.pred n)Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natRabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < epsBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natRabs (sum_f_R0 (fun k : nat => An k * Bn k) (Init.Nat.pred n) / sum_f_R0 An (Init.Nat.pred n) - l) < epsBn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%natn = S (Init.Nat.pred n)apply lt_O_Sn... Qed.Bn:nat -> Rl:RH:Un_cv Bn lAn:=fun _ : nat => 1:nat -> RH0:forall n0 : nat, 0 < An n0H1:forall n0 : nat, 0 < sum_f_R0 An n0H2:cv_infty (fun n0 : nat => sum_f_R0 An n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0) l < eps0eps:RH4:eps > 0x:natH5:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => An k * Bn k) n0 / sum_f_R0 An n0 - l) < epsn:natH6:(n >= S x)%nat(0 < S x)%nat