Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
Require Import R_sqrt.
Local Open Scope R_scope.

(**********)

forall h : R, Rabs h <= 1 -> Rabs (sqrt (1 + h) - 1) <= Rabs h

forall h : R, Rabs h <= 1 -> Rabs (sqrt (1 + h) - 1) <= Rabs h
h:R
H:Rabs h <= 1

0 <= 1 + h -> Rabs (sqrt (1 + h) - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h

Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

- (sqrt (1 + h) - 1) <= - (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h)² - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

- (-1 + sqrt (1 + h)) <= - (-1 + sqrt (1 + h)²)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h)² - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

- (- (1) + sqrt (1 + h)) <= - (- (1) + sqrt (1 + h)²)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h)² - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

- sqrt (1 + h) <= - sqrt (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h)² - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

0 <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
(1 + h)² <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h)² - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
(1 + h)² <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h)² - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

(1 + h)² <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h)² - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
1 + h <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h)² - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

1 + h <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h)² - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

sqrt (1 + h)² - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

sqrt (1 + h)² < 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

0 <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
(1 + h)² < 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
(1 + h)² < 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

(1 + h)² < 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

1 + h < 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

sqrt (1 + h) - 1 < 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

sqrt (1 + h) < 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
1 + h < 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0
1 + h < 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hlt:h < 0

1 + h < 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Heq:h = 0

Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

sqrt (1 + h) - 1 <= sqrt (1 + h)² - 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h)² - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

sqrt (1 + h) <= sqrt (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h)² - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
0 <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
1 + h <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h)² - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

0 <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
1 + h <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h)² - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

1 + h <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h)² - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
1 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h)² - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

1 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h)² - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

sqrt (1 + h)² - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

1 + 0 <= 1 + (sqrt (1 + h)² - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

1 <= sqrt (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
0 <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
1 <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

0 <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
1 <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

1 <= (1 + h)²
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

1 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

sqrt (1 + h) - 1 >= 0
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

1 + 0 < 1 + (sqrt (1 + h) - 1)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

1 < sqrt (1 + h)
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

0 <= 1
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
1 < 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0
1 < 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Hgt:h > 0

1 < 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h

Rabs (sqrt (1 + h)² - 1) <= Rabs h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h

Rabs (1 + h - 1) <= Rabs h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h
0 <= 1 + h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1
H0:0 <= 1 + h

0 <= 1 + h
h:R
H:Rabs h <= 1
0 <= 1 + h
h:R
H:Rabs h <= 1

0 <= 1 + h
h:R
H:Rabs h <= 1
Hlt:h < 0

0 <= 1 + h
h:R
H:Rabs h <= 1
Heq:h = 0
0 <= 1 + h
h:R
H:Rabs h <= 1
Hgt:h > 0
0 <= 1 + h
h:R
H:- h <= 1
Hlt:h < 0

0 <= 1 + h
h:R
H:Rabs h <= 1
Heq:h = 0
0 <= 1 + h
h:R
H:Rabs h <= 1
Hgt:h > 0
0 <= 1 + h
h:R
H:- h <= 1
Hlt:h < 0

- h + 0 <= - h + (1 + h)
h:R
H:Rabs h <= 1
Heq:h = 0
0 <= 1 + h
h:R
H:Rabs h <= 1
Hgt:h > 0
0 <= 1 + h
h:R
H:Rabs h <= 1
Heq:h = 0

0 <= 1 + h
h:R
H:Rabs h <= 1
Hgt:h > 0
0 <= 1 + h
h:R
H:Rabs h <= 1
Hgt:h > 0

0 <= 1 + h
h:R
H:Rabs h <= 1
Hgt:h > 0

0 < 1
h:R
H:Rabs h <= 1
Hgt:h > 0
0 < h
h:R
H:Rabs h <= 1
Hgt:h > 0

0 < h
apply Hgt. Qed.
sqrt is continuous in 1

continuity_pt sqrt 1

continuity_pt sqrt 1
eps:R
H:eps > 0

exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alp -> Rabs (sqrt x - sqrt 1) < eps)
eps:R
H:eps > 0
alpha:=Rmin eps 1:R

exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alp -> Rabs (sqrt x - sqrt 1) < eps)
eps:R
H:eps > 0
alpha:=Rmin eps 1:R

alpha > 0 /\ (forall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alpha -> Rabs (sqrt x - sqrt 1) < eps)
eps:R
H:eps > 0
alpha:=Rmin eps 1:R

alpha > 0
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
forall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alpha -> Rabs (sqrt x - sqrt 1) < eps
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
r:eps <= 1

eps > 0
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
n:~ eps <= 1
1 > 0
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
forall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alpha -> Rabs (sqrt x - sqrt 1) < eps
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
n:~ eps <= 1

1 > 0
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
forall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alpha -> Rabs (sqrt x - sqrt 1) < eps
eps:R
H:eps > 0
alpha:=Rmin eps 1:R

forall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alpha -> Rabs (sqrt x - sqrt 1) < eps
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha

Rabs (sqrt x - sqrt 1) < eps
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha

Rabs (sqrt (1 + (x - 1)) - 1) <= Rabs (x - 1)
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha
Rabs (x - 1) < eps
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha

Rabs (x - 1) <= 1
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha
Rabs (x - 1) < eps
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha

Rabs (x - 1) <= alpha
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha
alpha <= 1
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha
Rabs (x - 1) < eps
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha

alpha <= 1
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha
Rabs (x - 1) < eps
eps:R
H:eps > 0
alpha:=Rmin eps 1:R
x:R
H0:D_x no_cond 1 x /\ Rabs (x - 1) < alpha
H1:D_x no_cond 1 x
H2:Rabs (x - 1) < alpha

Rabs (x - 1) < eps
apply Rlt_le_trans with alpha; [ apply H2 | unfold alpha; apply Rmin_l ]. Qed.
sqrt is continuous forall x>0

forall x : R, 0 < x -> continuity_pt sqrt x

forall x : R, 0 < x -> continuity_pt sqrt x
x:R
H:0 < x

continuity_pt sqrt 1 -> continuity_pt sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0

0 < eps / sqrt x -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R

Rmin alpha x > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x -> Rabs (sqrt x0 - sqrt x) < eps)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R

Rmin alpha x > 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x -> Rabs (sqrt x0 - sqrt x) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
r:alpha <= x

0 < alpha
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
n:~ alpha <= x
0 < x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x -> Rabs (sqrt x0 - sqrt x) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
n:~ alpha <= x

0 < x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x -> Rabs (sqrt x0 - sqrt x) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R

forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x -> Rabs (sqrt x0 - sqrt x) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

Rabs (sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1)) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

sqrt x * Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

0 < / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
/ sqrt x * (sqrt x * Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1)) < / sqrt x * eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

/ sqrt x * (sqrt x * Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1)) < / sqrt x * eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

1 * Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < / sqrt x * eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x = x0

Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x = x0

0 < eps * / sqrt x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x = x0

0 < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x = x0
0 < / sqrt x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x = x0

0 < / sqrt x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0

Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0

D_x no_cond 1 (1 + (x0 - x) / x) /\ Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0

D_x no_cond 1 (1 + (x0 - x) / x)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0

True /\ 1 <> 1 + (x0 - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0

True
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
1 <> 1 + (x0 - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0

1 <> 1 + (x0 - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x

False
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x

(x0 - x) * / x = 0 -> False
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
(x0 - x) * / x = 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
H9:(x0 - x) * / x = 0

False
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
(x0 - x) * / x = 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
H9:(x0 - x) * / x = 0
H10:x0 - x = 0

False
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
H9:(x0 - x) * / x = 0
H10:/ x = 0
False
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
(x0 - x) * / x = 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
H9:(x0 - x) * / x = 0
H10:x0 - x = 0

x = x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
H9:(x0 - x) * / x = 0
H10:/ x = 0
False
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
(x0 - x) * / x = 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
H9:(x0 - x) * / x = 0
H10:/ x = 0

False
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
(x0 - x) * / x = 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
H9:(x0 - x) * / x = 0
H10:/ x = 0
H11:/ x * x = 0

False
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
(x0 - x) * / x = 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
H9:(x0 - x) * / x = 0
H10:/ x = 0
H11:1 = 0

False
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
H9:(x0 - x) * / x = 0
H10:/ x = 0
H11:/ x * x = 0
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
(x0 - x) * / x = 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
H9:(x0 - x) * / x = 0
H10:/ x = 0
H11:/ x * x = 0

x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x
(x0 - x) * / x = 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:1 = 1 + (x0 - x) / x

(x0 - x) * / x = 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0

Rabs (1 + (x0 - x) / x - 1) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

Rabs ((x0 + - x) / x) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

Rabs (x0 + - x) * Rabs (/ x) < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

Rabs (x0 + - x) * / Rabs x < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

Rabs (x0 + - x) * / x < alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

0 < x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x * (/ x * Rabs (x0 + - x)) < x * alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

x * (/ x * Rabs (x0 + - x)) < x * alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

1 * Rabs (x0 + - x) < x * alp_1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

Rabs (x0 + - x) < alpha
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

Rabs (x0 + - x) < Rmin alpha x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
Rmin alpha x <= alpha
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

Rmin alpha x <= alpha
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:x <> x0
H8:D_x no_cond x x0
H9:Rabs (x0 - x) < Rmin alpha x

x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:0 < sqrt x

sqrt x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

sqrt x >= 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

sqrt (x * (1 + (x0 + - x) / x)) + - sqrt (x * 1) = sqrt (x + (x0 + - x)) + - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= 1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

sqrt (x + (x0 + - x) * 1) + - sqrt x = sqrt (x + (x0 + - x)) + - sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= 1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= 1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= 1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

0 <= 1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

0 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x

0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x

0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

0 <= (x0 + - x) / x + 1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

- ((x0 - x) / x) + 0 <= - ((x0 - x) / x) + ((x0 + - x) / x + 1)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

- (x0 - x) * / x <= 1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

0 < x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0
x * (- (x0 - x) * / x) <= x * 1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

x * (- (x0 - x) * / x) <= x * 1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

- (x0 - x) * 1 <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

- (x0 - x) < Rmin alpha x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0
Rmin alpha x <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

Rmin alpha x <= x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0
x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:- (x0 - x) < Rmin alpha x
Hlt:x0 - x < 0

x <> 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0

0 <= 1 + (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0

0 <= 1
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0

0 <= (x0 + - x) / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0

0 <= x0 + - x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0
0 <= / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)
eps:R
H1:eps > 0
H2:0 < eps / sqrt x
alp_1:R
H3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)
H4:alp_1 > 0
H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x
alpha:=alp_1 * x:R
x0:R
H6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x
H7:D_x no_cond x x0
H8:Rabs (x0 - x) < Rmin alpha x
Hgt:x0 - x >= 0

0 <= / x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0

0 < eps / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0

0 < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0
0 < / sqrt x
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)
eps:R
H1:eps > 0

0 < / sqrt x
apply Rinv_0_lt_compat; apply sqrt_lt_R0; apply H. Qed.
sqrt is derivable for all x>0

forall x : R, 0 < x -> derivable_pt_lim sqrt x (/ (2 * sqrt x))

forall x : R, 0 < x -> derivable_pt_lim sqrt x (/ (2 * sqrt x))
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

derivable_pt_lim sqrt x (/ (2 * sqrt x))
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

continuity_pt g 0 -> derivable_pt_lim sqrt x (/ (2 * sqrt x))
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0

g 0 <> 0 -> derivable_pt_lim sqrt x (/ (2 * sqrt x))
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:continuity_pt (/ g) 0

derivable_pt_lim sqrt x (/ (2 * sqrt x))
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < eps
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < eps
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < eps
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < eps
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R

0 < alpha1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < eps
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < eps
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

Rabs (/ (sqrt x + sqrt (x + h)) - / (2 * sqrt x)) < eps
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

Rabs (/ (sqrt x + sqrt (x + h)) - / (sqrt x + sqrt (x + 0))) < eps
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
sqrt x + sqrt (x + 0) = 2 * sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

D_x no_cond 0 h /\ Rabs (h - 0) < alpha
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
sqrt x + sqrt (x + 0) = 2 * sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

D_x no_cond 0 h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Rabs (h - 0) < alpha
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
sqrt x + sqrt (x + 0) = 2 * sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

True /\ 0 <> h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Rabs (h - 0) < alpha
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
sqrt x + sqrt (x + 0) = 2 * sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

True
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <> h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Rabs (h - 0) < alpha
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
sqrt x + sqrt (x + 0) = 2 * sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

0 <> h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Rabs (h - 0) < alpha
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
sqrt x + sqrt (x + 0) = 2 * sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

Rabs (h - 0) < alpha
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
sqrt x + sqrt (x + 0) = 2 * sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

Rabs h < alpha1
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
alpha1 <= alpha
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
sqrt x + sqrt (x + 0) = 2 * sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

alpha1 <= alpha
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
sqrt x + sqrt (x + 0) = 2 * sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

sqrt x + sqrt (x + 0) = 2 * sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

0 <= x + h -> / (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h

0 < sqrt x + sqrt (x + h) -> / (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)

(sqrt x + sqrt (x + h)) * / (sqrt x + sqrt (x + h)) = (sqrt x + sqrt (x + h)) * ((sqrt (x + h) - sqrt x) / h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)

1 = (sqrt x + sqrt (x + h)) * ((sqrt (x + h) - sqrt x) / h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)

1 = (x + h - x) * / h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
0 <= x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
0 <= x + h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)

1 = 1
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
h <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
0 <= x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
0 <= x + h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)

h <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
0 <= x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
0 <= x + h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)

0 <= x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
0 <= x + h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)

0 <= x + h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)

sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)
sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
H11:0 < sqrt x + sqrt (x + h)

sqrt x + sqrt (x + h) <> 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h

0 < sqrt x + sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h

0 < sqrt x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h
0 <= sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
H10:0 <= x + h

0 <= sqrt (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}

0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Hlt:h < 0

0 <= x + h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Hgt:h >= 0
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:- h < {| pos := alpha1; cond_pos := H7 |}
Hlt:h < 0

0 <= x + h
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Hgt:h >= 0
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:- h < {| pos := alpha1; cond_pos := H7 |}
Hlt:h < 0

- h + 0 <= - h + (x + h)
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Hgt:h >= 0
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:- h < {| pos := alpha1; cond_pos := H7 |}
Hlt:h < 0

- h < alpha1
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:- h < {| pos := alpha1; cond_pos := H7 |}
Hlt:h < 0
alpha1 <= x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Hgt:h >= 0
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:- h < {| pos := alpha1; cond_pos := H7 |}
Hlt:h < 0

alpha1 <= x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Hgt:h >= 0
0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Hgt:h >= 0

0 <= x + h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Hgt:h >= 0

0 <= x
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Hgt:h >= 0
0 <= h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h0 : R => sqrt x + sqrt (x + h0):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
H7:0 < alpha1
h:R
H8:h <> 0
H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}
Hgt:h >= 0

0 <= h
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R

0 < alpha1
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
r:alpha <= x

0 < alpha
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
n:~ alpha <= x
0 < x
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
H1:g 0 <> 0
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)
eps:R
H3:0 < eps
alpha:R
H4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)
H5:alpha > 0
H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps
alpha1:=Rmin alpha x:R
n:~ alpha <= x

0 < x
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0

g 0 <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0

sqrt x + sqrt x <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0

0 < sqrt x + sqrt x -> sqrt x + sqrt x <> 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0
0 < sqrt x + sqrt x
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
H0:continuity_pt g 0

0 < sqrt x + sqrt x
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

continuity_pt g 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

continuity_pt (fct_cte (sqrt x) + comp sqrt (fct_cte x + id)) 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

continuity_pt (fct_cte (sqrt x)) 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt (comp sqrt (fct_cte x + id)) 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

continuity_pt (comp sqrt (fct_cte x + id)) 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

continuity_pt (fct_cte x + id) 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt sqrt ((fct_cte x + id)%F 0)
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

continuity_pt (fct_cte x) 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt id 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt sqrt ((fct_cte x + id)%F 0)
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

continuity_pt id 0
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R
continuity_pt sqrt ((fct_cte x + id)%F 0)
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

continuity_pt sqrt ((fct_cte x + id)%F 0)
x:R
H:0 < x
g:=fun h : R => sqrt x + sqrt (x + h):R -> R

0 < (fct_cte x + id)%F 0
unfold plus_fct, fct_cte, id; rewrite Rplus_0_r; apply H. Qed. (**********)

forall x : R, 0 < x -> derivable_pt sqrt x

forall x : R, 0 < x -> derivable_pt sqrt x
x:R
H:0 < x

{l : R | derivable_pt_abs sqrt x l}
x:R
H:0 < x

derivable_pt_abs sqrt x (/ (2 * sqrt x))
apply derivable_pt_lim_sqrt; assumption. Qed. (**********)

forall (x : R) (pr : 0 < x), derive_pt sqrt x (derivable_pt_sqrt x pr) = / (2 * sqrt x)

forall (x : R) (pr : 0 < x), derive_pt sqrt x (derivable_pt_sqrt x pr) = / (2 * sqrt x)
x:R
pr:0 < x

derive_pt sqrt x (derivable_pt_sqrt x pr) = / (2 * sqrt x)
x:R
pr:0 < x

derivable_pt_lim sqrt x (/ (2 * sqrt x))
apply derivable_pt_lim_sqrt; assumption. Qed.
We show that sqrt is continuous for all x>=0
Remark : by definition of sqrt (as extension of Rsqrt on |R), we could also show that sqrt is continuous for all x

forall x : R, 0 <= x -> continuity_pt sqrt x

forall x : R, 0 <= x -> continuity_pt sqrt x
x:R
H:0 <= x
H0:0 < x

continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x

continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x

continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0

eps² > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps² -> Rabs (sqrt x0 - sqrt x) < eps)
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0

eps² > 0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps² -> Rabs (sqrt x0 - sqrt x) < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0

eps <> 0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps² -> Rabs (sqrt x0 - sqrt x) < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0

forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps² -> Rabs (sqrt x0 - sqrt x) < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs (x0 - x) < eps²

Rabs (sqrt x0 - sqrt x) < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²

Rabs (sqrt x0) < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hlt:x0 < 0
Heqs:Rcase_abs x0 = left Hlt

Rabs (sqrt x0) < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
Rabs (sqrt x0) < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hlt:x0 < 0
Heqs:Rcase_abs x0 = left Hlt

Rabs match Rcase_abs x0 with | left _ => 0 | right a => Rsqrt_def.Rsqrt {| nonneg := x0; cond_nonneg := Rge_le x0 0 a |} end < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
Rabs (sqrt x0) < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hlt:x0 < 0
Heqs:Rcase_abs x0 = left Hlt

Rabs 0 < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
Rabs (sqrt x0) < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt

Rabs (sqrt x0) < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt

sqrt x0 < eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
sqrt x0 >= 0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt

(sqrt x0)² < eps²
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
0 <= sqrt x0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
0 <= eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
sqrt x0 >= 0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt

x0 < eps²
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
0 <= x0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
0 <= sqrt x0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
0 <= eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
sqrt x0 >= 0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt

0 <= x0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
0 <= sqrt x0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
0 <= eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
sqrt x0 >= 0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt

0 <= sqrt x0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
0 <= eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
sqrt x0 >= 0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt

0 <= eps
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt
sqrt x0 >= 0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 = x
eps:R
H2:eps > 0
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²
H4:D_x no_cond x x0
H5:Rabs x0 < eps²
Hgt:x0 >= 0
Heqs:Rcase_abs x0 = right Hgt

sqrt x0 >= 0
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x
continuity_pt sqrt x
x:R
H:0 <= x
H0:0 = x \/ 0 > x
H1:0 > x

continuity_pt sqrt x
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H1 H)). Qed.