Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import Ranalysis1. Require Import R_sqrt. Local Open Scope R_scope. (**********)forall h : R, Rabs h <= 1 -> Rabs (sqrt (1 + h) - 1) <= Rabs hforall h : R, Rabs h <= 1 -> Rabs (sqrt (1 + h) - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + h -> Rabs (sqrt (1 + h) - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0- (sqrt (1 + h) - 1) <= - (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0- (-1 + sqrt (1 + h)) <= - (-1 + sqrt (1 + h)²)h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0- (- (1) + sqrt (1 + h)) <= - (- (1) + sqrt (1 + h)²)h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0- sqrt (1 + h) <= - sqrt (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0(1 + h)² <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0(1 + h)² <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0(1 + h)² <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 01 + h <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 01 + h <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h)² < 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0(1 + h)² < 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0(1 + h)² < 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0(1 + h)² < 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 01 + h < 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) - 1 < 0h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 0sqrt (1 + h) < 1h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 01 + h < 1h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 01 + h < 1h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHlt:h < 01 + h < 1h:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHeq:h = 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0Rabs (sqrt (1 + h) - 1) <= Rabs (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 <= sqrt (1 + h)² - 1h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h)² - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) <= sqrt (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h)² - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 + h <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h)² - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 + h <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h)² - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 + h <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h)² - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h)² - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h)² - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h)² - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 + 0 <= 1 + (sqrt (1 + h)² - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 <= sqrt (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 <= (1 + h)²h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 0sqrt (1 + h) - 1 >= 0h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 + 0 < 1 + (sqrt (1 + h) - 1)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 < sqrt (1 + h)h:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1h:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 < 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 00 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 < 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hHgt:h > 01 < 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hRabs (sqrt (1 + h)² - 1) <= Rabs hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + hRabs (1 + h - 1) <= Rabs hh:RH:Rabs h <= 1H0:0 <= 1 + h0 <= 1 + hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1H0:0 <= 1 + h0 <= 1 + hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 10 <= 1 + hh:RH:Rabs h <= 1Hlt:h < 00 <= 1 + hh:RH:Rabs h <= 1Heq:h = 00 <= 1 + hh:RH:Rabs h <= 1Hgt:h > 00 <= 1 + hh:RH:- h <= 1Hlt:h < 00 <= 1 + hh:RH:Rabs h <= 1Heq:h = 00 <= 1 + hh:RH:Rabs h <= 1Hgt:h > 00 <= 1 + hh:RH:- h <= 1Hlt:h < 0- h + 0 <= - h + (1 + h)h:RH:Rabs h <= 1Heq:h = 00 <= 1 + hh:RH:Rabs h <= 1Hgt:h > 00 <= 1 + hh:RH:Rabs h <= 1Heq:h = 00 <= 1 + hh:RH:Rabs h <= 1Hgt:h > 00 <= 1 + hh:RH:Rabs h <= 1Hgt:h > 00 <= 1 + hh:RH:Rabs h <= 1Hgt:h > 00 < 1h:RH:Rabs h <= 1Hgt:h > 00 < happly Hgt. Qed.h:RH:Rabs h <= 1Hgt:h > 00 < h
sqrt is continuous in 1
continuity_pt sqrt 1continuity_pt sqrt 1eps:RH:eps > 0exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alp -> Rabs (sqrt x - sqrt 1) < eps)eps:RH:eps > 0alpha:=Rmin eps 1:Rexists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alp -> Rabs (sqrt x - sqrt 1) < eps)eps:RH:eps > 0alpha:=Rmin eps 1:Ralpha > 0 /\ (forall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alpha -> Rabs (sqrt x - sqrt 1) < eps)eps:RH:eps > 0alpha:=Rmin eps 1:Ralpha > 0eps:RH:eps > 0alpha:=Rmin eps 1:Rforall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alpha -> Rabs (sqrt x - sqrt 1) < epseps:RH:eps > 0alpha:=Rmin eps 1:Rr:eps <= 1eps > 0eps:RH:eps > 0alpha:=Rmin eps 1:Rn:~ eps <= 11 > 0eps:RH:eps > 0alpha:=Rmin eps 1:Rforall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alpha -> Rabs (sqrt x - sqrt 1) < epseps:RH:eps > 0alpha:=Rmin eps 1:Rn:~ eps <= 11 > 0eps:RH:eps > 0alpha:=Rmin eps 1:Rforall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alpha -> Rabs (sqrt x - sqrt 1) < epseps:RH:eps > 0alpha:=Rmin eps 1:Rforall x : R, D_x no_cond 1 x /\ Rabs (x - 1) < alpha -> Rabs (sqrt x - sqrt 1) < epseps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaRabs (sqrt x - sqrt 1) < epseps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaRabs (sqrt (1 + (x - 1)) - 1) <= Rabs (x - 1)eps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaRabs (x - 1) < epseps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaRabs (x - 1) <= 1eps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaRabs (x - 1) < epseps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaRabs (x - 1) <= alphaeps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaalpha <= 1eps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaRabs (x - 1) < epseps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaalpha <= 1eps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaRabs (x - 1) < epsapply Rlt_le_trans with alpha; [ apply H2 | unfold alpha; apply Rmin_l ]. Qed.eps:RH:eps > 0alpha:=Rmin eps 1:Rx:RH0:D_x no_cond 1 x /\ Rabs (x - 1) < alphaH1:D_x no_cond 1 xH2:Rabs (x - 1) < alphaRabs (x - 1) < eps
sqrt is continuous forall x>0
forall x : R, 0 < x -> continuity_pt sqrt xforall x : R, 0 < x -> continuity_pt sqrt xx:RH:0 < xcontinuity_pt sqrt 1 -> continuity_pt sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt x -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xexists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rexists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:RRmin alpha x > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x -> Rabs (sqrt x0 - sqrt x) < eps)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:RRmin alpha x > 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rforall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x -> Rabs (sqrt x0 - sqrt x) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rr:alpha <= x0 < alphax:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rn:~ alpha <= x0 < xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rforall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x -> Rabs (sqrt x0 - sqrt x) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rn:~ alpha <= x0 < xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rforall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x -> Rabs (sqrt x0 - sqrt x) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp_1 -> Rabs (sqrt x0 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rforall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x -> Rabs (sqrt x0 - sqrt x) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xRabs (sqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1)) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 < / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x/ sqrt x * (sqrt x * Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1)) < / sqrt x * epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x/ sqrt x * (sqrt x * Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1)) < / sqrt x * epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x1 * Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < / sqrt x * epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xRabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xRabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x = x0Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x = x00 < eps * / sqrt x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x = x00 < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x = x00 < / sqrt x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x = x00 < / sqrt x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (sqrt (1 + (x0 - x) / x) - sqrt 1) < eps * / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0D_x no_cond 1 (1 + (x0 - x) / x) /\ Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0D_x no_cond 1 (1 + (x0 - x) / x)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0True /\ 1 <> 1 + (x0 - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Truex:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x01 <> 1 + (x0 - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x01 <> 1 + (x0 - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xFalsex:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / x(x0 - x) * / x = 0 -> Falsex:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / x(x0 - x) * / x = 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xH9:(x0 - x) * / x = 0Falsex:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / x(x0 - x) * / x = 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xH9:(x0 - x) * / x = 0H10:x0 - x = 0Falsex:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xH9:(x0 - x) * / x = 0H10:/ x = 0Falsex:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / x(x0 - x) * / x = 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xH9:(x0 - x) * / x = 0H10:x0 - x = 0x = x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xH9:(x0 - x) * / x = 0H10:/ x = 0Falsex:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / x(x0 - x) * / x = 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xH9:(x0 - x) * / x = 0H10:/ x = 0Falsex:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / x(x0 - x) * / x = 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xH9:(x0 - x) * / x = 0H10:/ x = 0H11:/ x * x = 0Falsex:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / x(x0 - x) * / x = 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xH9:(x0 - x) * / x = 0H10:/ x = 0H11:1 = 0Falsex:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xH9:(x0 - x) * / x = 0H10:/ x = 0H11:/ x * x = 0x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / x(x0 - x) * / x = 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / xH9:(x0 - x) * / x = 0H10:/ x = 0H11:/ x * x = 0x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / x(x0 - x) * / x = 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:1 = 1 + (x0 - x) / x(x0 - x) * / x = 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0Rabs (1 + (x0 - x) / x - 1) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xRabs ((x0 + - x) / x) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xRabs (x0 + - x) * Rabs (/ x) < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xRabs (x0 + - x) * / Rabs x < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xRabs (x0 + - x) * / x < alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha x0 < xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx * (/ x * Rabs (x0 + - x)) < x * alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx * (/ x * Rabs (x0 + - x)) < x * alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha x1 * Rabs (x0 + - x) < x * alp_1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xRabs (x0 + - x) < alphax:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xRabs (x0 + - x) < Rmin alpha xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xRmin alpha x <= alphax:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xRmin alpha x <= alphax:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps * / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:x <> x0H8:D_x no_cond x x0H9:Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:0 < sqrt xsqrt x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x >= 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt x * (sqrt (1 + (x0 - x) / x) - sqrt 1) = sqrt (x + (x0 - x)) - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt (x * (1 + (x0 + - x) / x)) + - sqrt (x * 1) = sqrt (x + (x0 + - x)) + - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xsqrt (x + (x0 + - x) * 1) + - sqrt x = sqrt (x + (x0 + - x)) + - sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xx <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha x0 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha x0 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHlt:x0 - x < 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 00 <= (x0 + - x) / x + 1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0- ((x0 - x) / x) + 0 <= - ((x0 - x) / x) + ((x0 + - x) / x + 1)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0- (x0 - x) * / x <= 1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 00 < xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0x * (- (x0 - x) * / x) <= x * 1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0x * (- (x0 - x) * / x) <= x * 1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0- (x0 - x) * 1 <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0- (x0 - x) < Rmin alpha xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0Rmin alpha x <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0Rmin alpha x <= xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:- (x0 - x) < Rmin alpha xHlt:x0 - x < 0x <> 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1 + (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= 1x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= (x0 + - x) / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= x0 + - xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp -> Rabs (sqrt x1 - sqrt 1) < eps0)eps:RH1:eps > 0H2:0 < eps / sqrt xalp_1:RH3:alp_1 > 0 /\ (forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt x)H4:alp_1 > 0H5:forall x1 : R, D_x no_cond 1 x1 /\ Rabs (x1 - 1) < alp_1 -> Rabs (sqrt x1 - sqrt 1) < eps / sqrt xalpha:=alp_1 * x:Rx0:RH6:D_x no_cond x x0 /\ Rabs (x0 - x) < Rmin alpha xH7:D_x no_cond x x0H8:Rabs (x0 - x) < Rmin alpha xHgt:x0 - x >= 00 <= / xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < eps / sqrt xx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < / sqrt xapply Rinv_0_lt_compat; apply sqrt_lt_R0; apply H. Qed.x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alp -> Rabs (sqrt x0 - sqrt 1) < eps0)eps:RH1:eps > 00 < / sqrt x
sqrt is derivable for all x>0
forall x : R, 0 < x -> derivable_pt_lim sqrt x (/ (2 * sqrt x))forall x : R, 0 < x -> derivable_pt_lim sqrt x (/ (2 * sqrt x))x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rderivable_pt_lim sqrt x (/ (2 * sqrt x))x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0 -> derivable_pt_lim sqrt x (/ (2 * sqrt x))x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0 -> derivable_pt_lim sqrt x (/ (2 * sqrt x))x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:continuity_pt (/ g) 0derivable_pt_lim sqrt x (/ (2 * sqrt x))x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < epsx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < epsx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < epsx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:Rexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < epsx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < epsx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Rabs ((sqrt (x + h) - sqrt x) / h - / (2 * sqrt x)) < epsx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Rabs (/ (sqrt x + sqrt (x + h)) - / (2 * sqrt x)) < epsx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Rabs (/ (sqrt x + sqrt (x + h)) - / (sqrt x + sqrt (x + 0))) < epsx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}sqrt x + sqrt (x + 0) = 2 * sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}D_x no_cond 0 h /\ Rabs (h - 0) < alphax:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}sqrt x + sqrt (x + 0) = 2 * sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}D_x no_cond 0 hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Rabs (h - 0) < alphax:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}sqrt x + sqrt (x + 0) = 2 * sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}True /\ 0 <> hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Rabs (h - 0) < alphax:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}sqrt x + sqrt (x + 0) = 2 * sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Truex:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <> hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Rabs (h - 0) < alphax:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}sqrt x + sqrt (x + 0) = 2 * sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <> hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Rabs (h - 0) < alphax:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}sqrt x + sqrt (x + 0) = 2 * sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Rabs (h - 0) < alphax:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}sqrt x + sqrt (x + 0) = 2 * sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Rabs h < alpha1x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}alpha1 <= alphax:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}sqrt x + sqrt (x + 0) = 2 * sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}alpha1 <= alphax:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}sqrt x + sqrt (x + 0) = 2 * sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ (sqrt x + sqrt (x + x0)) - / (sqrt x + sqrt (x + 0))) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}sqrt x + sqrt (x + 0) = 2 * sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}/ (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + h -> / (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h) -> / (sqrt x + sqrt (x + h)) = (sqrt (x + h) - sqrt x) / hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)(sqrt x + sqrt (x + h)) * / (sqrt x + sqrt (x + h)) = (sqrt x + sqrt (x + h)) * ((sqrt (x + h) - sqrt x) / h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)1 = (sqrt x + sqrt (x + h)) * ((sqrt (x + h) - sqrt x) / h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)1 = (x + h - x) * / hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)0 <= xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)0 <= x + hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)1 = 1x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)h <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)0 <= xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)0 <= x + hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)h <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)0 <= xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)0 <= x + hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)0 <= xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)0 <= x + hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)0 <= x + hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + hH11:0 < sqrt x + sqrt (x + h)sqrt x + sqrt (x + h) <> 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt x + sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 < sqrt xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 <= sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}H10:0 <= x + h0 <= sqrt (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}0 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Hlt:h < 00 <= x + hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Hgt:h >= 00 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:- h < {| pos := alpha1; cond_pos := H7 |}Hlt:h < 00 <= x + hx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Hgt:h >= 00 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:- h < {| pos := alpha1; cond_pos := H7 |}Hlt:h < 0- h + 0 <= - h + (x + h)x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Hgt:h >= 00 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:- h < {| pos := alpha1; cond_pos := H7 |}Hlt:h < 0- h < alpha1x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:- h < {| pos := alpha1; cond_pos := H7 |}Hlt:h < 0alpha1 <= xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Hgt:h >= 00 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:- h < {| pos := alpha1; cond_pos := H7 |}Hlt:h < 0alpha1 <= xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Hgt:h >= 00 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Hgt:h >= 00 <= x + hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Hgt:h >= 00 <= xx:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Hgt:h >= 00 <= hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h0 : R => sqrt x + sqrt (x + h0):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:RH7:0 < alpha1h:RH8:h <> 0H9:Rabs h < {| pos := alpha1; cond_pos := H7 |}Hgt:h >= 00 <= hx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:R0 < alpha1x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:Rr:alpha <= x0 < alphax:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:Rn:~ alpha <= x0 < xx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0H1:g 0 <> 0H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps0)eps:RH3:0 < epsalpha:RH4:alpha > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < eps)H5:alpha > 0H6:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alpha -> Rabs ((/ g)%F x0 - (/ g)%F 0) < epsalpha1:=Rmin alpha x:Rn:~ alpha <= x0 < xx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0g 0 <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 0sqrt x + sqrt x <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 00 < sqrt x + sqrt x -> sqrt x + sqrt x <> 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 00 < sqrt x + sqrt xx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> RH0:continuity_pt g 00 < sqrt x + sqrt xx:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt g 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt (fct_cte (sqrt x) + comp sqrt (fct_cte x + id)) 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt (fct_cte (sqrt x)) 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt (comp sqrt (fct_cte x + id)) 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt (comp sqrt (fct_cte x + id)) 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt (fct_cte x + id) 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt sqrt ((fct_cte x + id)%F 0)x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt (fct_cte x) 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt id 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt sqrt ((fct_cte x + id)%F 0)x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt id 0x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt sqrt ((fct_cte x + id)%F 0)x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> Rcontinuity_pt sqrt ((fct_cte x + id)%F 0)unfold plus_fct, fct_cte, id; rewrite Rplus_0_r; apply H. Qed. (**********)x:RH:0 < xg:=fun h : R => sqrt x + sqrt (x + h):R -> R0 < (fct_cte x + id)%F 0forall x : R, 0 < x -> derivable_pt sqrt xforall x : R, 0 < x -> derivable_pt sqrt xx:RH:0 < x{l : R | derivable_pt_abs sqrt x l}apply derivable_pt_lim_sqrt; assumption. Qed. (**********)x:RH:0 < xderivable_pt_abs sqrt x (/ (2 * sqrt x))forall (x : R) (pr : 0 < x), derive_pt sqrt x (derivable_pt_sqrt x pr) = / (2 * sqrt x)forall (x : R) (pr : 0 < x), derive_pt sqrt x (derivable_pt_sqrt x pr) = / (2 * sqrt x)x:Rpr:0 < xderive_pt sqrt x (derivable_pt_sqrt x pr) = / (2 * sqrt x)apply derivable_pt_lim_sqrt; assumption. Qed.x:Rpr:0 < xderivable_pt_lim sqrt x (/ (2 * sqrt x))
We show that sqrt is continuous for all x>=0
Remark : by definition of sqrt (as extension of Rsqrt on |R),
we could also show that sqrt is continuous for all x
forall x : R, 0 <= x -> continuity_pt sqrt xforall x : R, 0 <= x -> continuity_pt sqrt xx:RH:0 <= xH0:0 < xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (sqrt x0 - sqrt x) < eps)x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0eps² > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps² -> Rabs (sqrt x0 - sqrt x) < eps)x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0eps² > 0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps² -> Rabs (sqrt x0 - sqrt x) < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0eps <> 0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps² -> Rabs (sqrt x0 - sqrt x) < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps² -> Rabs (sqrt x0 - sqrt x) < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs (x0 - x) < eps²Rabs (sqrt x0 - sqrt x) < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Rabs (sqrt x0) < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hlt:x0 < 0Heqs:Rcase_abs x0 = left HltRabs (sqrt x0) < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right HgtRabs (sqrt x0) < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hlt:x0 < 0Heqs:Rcase_abs x0 = left HltRabs match Rcase_abs x0 with | left _ => 0 | right a => Rsqrt_def.Rsqrt {| nonneg := x0; cond_nonneg := Rge_le x0 0 a |} end < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right HgtRabs (sqrt x0) < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hlt:x0 < 0Heqs:Rcase_abs x0 = left HltRabs 0 < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right HgtRabs (sqrt x0) < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right HgtRabs (sqrt x0) < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgtsqrt x0 < epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgtsqrt x0 >= 0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt(sqrt x0)² < eps²x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= sqrt x0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgtsqrt x0 >= 0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgtx0 < eps²x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= x0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= sqrt x0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgtsqrt x0 >= 0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= x0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= sqrt x0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgtsqrt x0 >= 0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= sqrt x0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgtsqrt x0 >= 0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgt0 <= epsx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgtsqrt x0 >= 0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xx:RH:0 <= xH0:0 = x \/ 0 > xH1:0 = xeps:RH2:eps > 0x0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < eps²H4:D_x no_cond x x0H5:Rabs x0 < eps²Hgt:x0 >= 0Heqs:Rcase_abs x0 = right Hgtsqrt x0 >= 0x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt xelim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H1 H)). Qed.x:RH:0 <= xH0:0 = x \/ 0 > xH1:0 > xcontinuity_pt sqrt x