Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Section Relation_Definition. Variable A : Type. Definition relation := A -> A -> Prop. Variable R : relation. Section General_Properties_of_Relations. Definition reflexive : Prop := forall x:A, R x x. Definition transitive : Prop := forall x y z:A, R x y -> R y z -> R x z. Definition symmetric : Prop := forall x y:A, R x y -> R y x. Definition antisymmetric : Prop := forall x y:A, R x y -> R y x -> x = y. (* for compatibility with Equivalence in ../PROGRAMS/ALG/ *) Definition equiv := reflexive /\ transitive /\ symmetric. End General_Properties_of_Relations. Section Sets_of_Relations. Record preorder : Prop := { preord_refl : reflexive; preord_trans : transitive}. Record order : Prop := { ord_refl : reflexive; ord_trans : transitive; ord_antisym : antisymmetric}. Record equivalence : Prop := { equiv_refl : reflexive; equiv_trans : transitive; equiv_sym : symmetric}. Record PER : Prop := {per_sym : symmetric; per_trans : transitive}. End Sets_of_Relations. Section Relations_of_Relations. Definition inclusion (R1 R2:relation) : Prop := forall x y:A, R1 x y -> R2 x y. Definition same_relation (R1 R2:relation) : Prop := inclusion R1 R2 /\ inclusion R2 R1. Definition commut (R1 R2:relation) : Prop := forall x y:A, R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'. End Relations_of_Relations. End Relation_Definition. Hint Unfold reflexive transitive antisymmetric symmetric: sets. Hint Resolve Build_preorder Build_order Build_equivalence Build_PER preord_refl preord_trans ord_refl ord_trans ord_antisym equiv_refl equiv_trans equiv_sym per_sym per_trans: sets. Hint Unfold inclusion same_relation commut: sets.