Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Export Relation_Definitions.
Require Export Relation_Operators.
Require Export Operators_Properties.


forall (A B : Type) (f : A -> B) (r : relation B), equivalence B r -> equivalence A (fun x y : A => r (f x) (f y))

forall (A B : Type) (f : A -> B) (r : relation B), equivalence B r -> equivalence A (fun x y : A => r (f x) (f y))
A, B:Type
f:A -> B
r:relation B
H:equivalence B r

reflexive B r -> transitive B r -> symmetric B r -> forall x y z : A, r (f x) (f y) -> r (f y) (f z) -> r (f x) (f z)
intros _ equiv_trans _ x y z H0 H1; apply equiv_trans with (f y); assumption. Qed.

forall (A B : Type) (f : A -> B), equivalence A (fun x y : A => f x = f y)

forall (A B : Type) (f : A -> B), equivalence A (fun x y : A => f x = f y)
split; red; [ (* reflexivity *) reflexivity | (* transitivity *) intros; transitivity (f y); assumption | (* symmetry *) intros; symmetry ; assumption ]. Qed.