Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Export Relation_Definitions. Require Export Relation_Operators. Require Export Operators_Properties.forall (A B : Type) (f : A -> B) (r : relation B), equivalence B r -> equivalence A (fun x y : A => r (f x) (f y))forall (A B : Type) (f : A -> B) (r : relation B), equivalence B r -> equivalence A (fun x y : A => r (f x) (f y))intros _ equiv_trans _ x y z H0 H1; apply equiv_trans with (f y); assumption. Qed.A, B:Typef:A -> Br:relation BH:equivalence B rreflexive B r -> transitive B r -> symmetric B r -> forall x y z : A, r (f x) (f y) -> r (f y) (f z) -> r (f x) (f z)forall (A B : Type) (f : A -> B), equivalence A (fun x y : A => f x = f y)split; red; [ (* reflexivity *) reflexivity | (* transitivity *) intros; transitivity (f y); assumption | (* symmetry *) intros; symmetry ; assumption ]. Qed.forall (A B : Type) (f : A -> B), equivalence A (fun x y : A => f x = f y)