Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Export Coq.Classes.SetoidTactics.

Export Morphisms.ProperNotations.
For backward compatibility
Definition Setoid_Theory := @Equivalence.
Definition Build_Setoid_Theory := @Build_Equivalence.

Register Build_Setoid_Theory as plugins.setoid_ring.Build_Setoid_Theory.

A:Type
Aeq:relation A
s:Setoid_Theory A Aeq

forall x : A, Aeq x x
A:Type
Aeq:relation A
s:Setoid_Theory A Aeq

forall x : A, Aeq x x
A:Type
Aeq:relation A
s:Equivalence Aeq

forall x : A, Aeq x x
intros ; reflexivity. Defined.
A:Type
Aeq:relation A
s:Setoid_Theory A Aeq

forall x y : A, Aeq x y -> Aeq y x
A:Type
Aeq:relation A
s:Setoid_Theory A Aeq

forall x y : A, Aeq x y -> Aeq y x
A:Type
Aeq:relation A
s:Equivalence Aeq

forall x y : A, Aeq x y -> Aeq y x
intros ; symmetry ; assumption. Defined.
A:Type
Aeq:relation A
s:Setoid_Theory A Aeq

forall x y z : A, Aeq x y -> Aeq y z -> Aeq x z
A:Type
Aeq:relation A
s:Setoid_Theory A Aeq

forall x y z : A, Aeq x y -> Aeq y z -> Aeq x z
A:Type
Aeq:relation A
s:Equivalence Aeq

forall x y z : A, Aeq x y -> Aeq y z -> Aeq x z
intros ; transitivity y ; assumption. Defined.
Some tactics for manipulating Setoid Theory not officially declared as Setoid.
Ltac trans_st x :=
  idtac "trans_st on Setoid_Theory is OBSOLETE";
  idtac "use transitivity on Equivalence instead";
  match goal with
    | H : Setoid_Theory _ ?eqA |- ?eqA _ _ =>
      apply (Seq_trans _ _ H) with x; auto
  end.

Ltac sym_st :=
  idtac "sym_st on Setoid_Theory is OBSOLETE";
  idtac "use symmetry on Equivalence instead";
  match goal with
    | H : Setoid_Theory _ ?eqA |- ?eqA _ _ =>
      apply (Seq_sym _ _ H); auto
  end.

Ltac refl_st :=
  idtac "refl_st on Setoid_Theory is OBSOLETE";
  idtac "use reflexivity on Equivalence instead";
  match goal with
    | H : Setoid_Theory _ ?eqA |- ?eqA _ _ =>
      apply (Seq_refl _ _ H); auto
  end.


forall A : Set, Setoid_Theory A eq

forall A : Set, Setoid_Theory A eq
constructor; congruence. Qed.