Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(****************************************************************************)
(*                                                                          *)
(*                         Naive Set Theory in Coq                          *)
(*                                                                          *)
(*                     INRIA                        INRIA                   *)
(*              Rocquencourt                        Sophia-Antipolis        *)
(*                                                                          *)
(*                                 Coq V6.1                                 *)
(*									    *)
(*			         Gilles Kahn 				    *)
(*				 Gerard Huet				    *)
(*									    *)
(*									    *)
(*                                                                          *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks  *)
(* to the Newton Institute for providing an exceptional work environment    *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration.  *)
(****************************************************************************)

Require Import Ensembles.

Section Ensembles_finis.
  Variable U : Type.

  Inductive Finite : Ensemble U -> Prop :=
    | Empty_is_finite : Finite (Empty_set U)
    | Union_is_finite :
      forall A:Ensemble U,
        Finite A -> forall x:U, ~ In U A x -> Finite (Add U A x).

  Inductive cardinal : Ensemble U -> nat -> Prop :=
    | card_empty : cardinal (Empty_set U) 0
    | card_add :
      forall (A:Ensemble U) (n:nat),
        cardinal A n -> forall x:U, ~ In U A x -> cardinal (Add U A x) (S n).

End Ensembles_finis.

Hint Resolve Empty_is_finite Union_is_finite: sets.
Hint Resolve card_empty card_add: sets.

Require Import Constructive_sets.

Section Ensembles_finis_facts.
  Variable U : Type.

  
U:Type

forall (X : Ensemble U) (p : nat), cardinal U X p -> match p with | 0 => X = Empty_set U | S n => exists (A : Ensemble U) (x : U), X = Add U A x /\ ~ In U A x /\ cardinal U A n end
U:Type

forall (X : Ensemble U) (p : nat), cardinal U X p -> match p with | 0 => X = Empty_set U | S n => exists (A : Ensemble U) (x : U), X = Add U A x /\ ~ In U A x /\ cardinal U A n end
U:Type
A:Ensemble U
n:nat
H:cardinal U A n
x:U
H0:~ In U A x
IHcardinal:match n with | 0 => A = Empty_set U | S n0 => exists (A0 : Ensemble U) (x0 : U), A = Add U A0 x0 /\ ~ In U A0 x0 /\ cardinal U A0 n0 end

exists (A0 : Ensemble U) (x0 : U), Add U A x = Add U A0 x0 /\ ~ In U A0 x0 /\ cardinal U A0 n
exists A; exists x; auto. Qed.
U:Type

forall (X : Ensemble U) (p : nat), cardinal U X p -> match p with | 0 => X = Empty_set U | S _ => Inhabited U X end
U:Type

forall (X : Ensemble U) (p : nat), cardinal U X p -> match p with | 0 => X = Empty_set U | S _ => Inhabited U X end
intros X p C; elim C; simpl; trivial with sets. Qed. End Ensembles_finis_facts.