Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (****************************************************************************) (* *) (* Naive Set Theory in Coq *) (* *) (* INRIA INRIA *) (* Rocquencourt Sophia-Antipolis *) (* *) (* Coq V6.1 *) (* *) (* Gilles Kahn *) (* Gerard Huet *) (* *) (* *) (* *) (* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *) (* to the Newton Institute for providing an exceptional work environment *) (* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) (****************************************************************************) Section Relations_1. Variable U : Type. Definition Relation := U -> U -> Prop. Variable R : Relation. Definition Reflexive : Prop := forall x:U, R x x. Definition Transitive : Prop := forall x y z:U, R x y -> R y z -> R x z. Definition Symmetric : Prop := forall x y:U, R x y -> R y x. Definition Antisymmetric : Prop := forall x y:U, R x y -> R y x -> x = y. Definition contains (R R':Relation) : Prop := forall x y:U, R' x y -> R x y. Definition same_relation (R R':Relation) : Prop := contains R R' /\ contains R' R. Inductive Preorder : Prop := Definition_of_preorder : Reflexive -> Transitive -> Preorder. Inductive Order : Prop := Definition_of_order : Reflexive -> Transitive -> Antisymmetric -> Order. Inductive Equivalence : Prop := Definition_of_equivalence : Reflexive -> Transitive -> Symmetric -> Equivalence. Inductive PER : Prop := Definition_of_PER : Symmetric -> Transitive -> PER. End Relations_1. Hint Unfold Reflexive Transitive Antisymmetric Symmetric contains same_relation: sets. Hint Resolve Definition_of_preorder Definition_of_order Definition_of_equivalence Definition_of_PER: sets.