Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (****************************************************************************) (* *) (* Naive Set Theory in Coq *) (* *) (* INRIA INRIA *) (* Rocquencourt Sophia-Antipolis *) (* *) (* Coq V6.1 *) (* *) (* Gilles Kahn *) (* Gerard Huet *) (* *) (* *) (* *) (* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *) (* to the Newton Institute for providing an exceptional work environment *) (* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) (****************************************************************************) Require Export Relations_1. Section Relations_2. Variable U : Type. Variable R : Relation U. Inductive Rstar (x:U) : U -> Prop := | Rstar_0 : Rstar x x | Rstar_n : forall y z:U, R x y -> Rstar y z -> Rstar x z. Inductive Rstar1 (x:U) : U -> Prop := | Rstar1_0 : Rstar1 x x | Rstar1_1 : forall y:U, R x y -> Rstar1 x y | Rstar1_n : forall y z:U, Rstar1 x y -> Rstar1 y z -> Rstar1 x z. Inductive Rplus (x:U) : U -> Prop := | Rplus_0 : forall y:U, R x y -> Rplus x y | Rplus_n : forall y z:U, R x y -> Rplus y z -> Rplus x z. Definition Strongly_confluent : Prop := forall x a b:U, R x a -> R x b -> ex (fun z:U => R a z /\ R b z). End Relations_2. Hint Resolve Rstar_0: sets. Hint Resolve Rstar1_0: sets. Hint Resolve Rstar1_1: sets. Hint Resolve Rplus_0: sets.