Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (****************************************************************************) (* *) (* Naive Set Theory in Coq *) (* *) (* INRIA INRIA *) (* Rocquencourt Sophia-Antipolis *) (* *) (* Coq V6.1 *) (* *) (* Gilles Kahn *) (* Gerard Huet *) (* *) (* *) (* *) (* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *) (* to the Newton Institute for providing an exceptional work environment *) (* in Summer 1995. Several developments by E. Ledinot were an inspiration. *) (****************************************************************************) Require Export Relations_1. Require Export Relations_2. Section Relations_3. Variable U : Type. Variable R : Relation U. Definition coherent (x y:U) : Prop := exists z : _, Rstar U R x z /\ Rstar U R y z. Definition locally_confluent (x:U) : Prop := forall y z:U, R x y -> R x z -> coherent y z. Definition Locally_confluent : Prop := forall x:U, locally_confluent x. Definition confluent (x:U) : Prop := forall y z:U, Rstar U R x y -> Rstar U R x z -> coherent y z. Definition Confluent : Prop := forall x:U, confluent x. Inductive noetherian (x: U) : Prop := definition_of_noetherian : (forall y:U, R x y -> noetherian y) -> noetherian x. Definition Noetherian : Prop := forall x:U, noetherian x. End Relations_3. Hint Unfold coherent: sets. Hint Unfold locally_confluent: sets. Hint Unfold confluent: sets. Hint Unfold Confluent: sets. Hint Resolve definition_of_noetherian: sets. Hint Unfold Noetherian: sets.