Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import Ascii String.
Require Import BinNums.
Import BinNatDef.
Import BinIntDef.
Import BinPosDef.

Local Open Scope positive_scope.
Local Open Scope string_scope.

Definition ascii_to_digit (ch : ascii) : option N
  := (if ascii_dec ch "0" then Some 0
      else if ascii_dec ch "1" then Some 1
      else None)%N.

Fixpoint pos_bin_app (p q:positive) : positive :=
  match q with
  | q~0 => (pos_bin_app p q)~0
  | q~1 => (pos_bin_app p q)~1
  | 1 => p~1
  end.

Module Raw.
  Fixpoint of_pos (p : positive) (rest : string) : string
    := match p with
       | 1 => String "1" rest
       | p'~0 => of_pos p' (String "0" rest)
       | p'~1 => of_pos p' (String "1" rest)
       end.

  Fixpoint to_N (s : string) (rest : N)
    : N
    := match s with
       | "" => rest
       | String ch s'
         => to_N
              s'
              match ascii_to_digit ch with
              | Some v => N.add v (N.double rest)
              | None => N0
              end
       end.

  
to_N_of_pos:forall (p0 : positive) (rest0 : string) (base0 : N), to_N (of_pos p0 rest0) base0 = to_N rest0 match base0 with | 0 => N.pos p0 | N.pos v => N.pos (pos_bin_app v p0) end
p:positive
rest:string
base:N

to_N (of_pos p rest) base = to_N rest match base with | 0 => N.pos p | N.pos v => N.pos (pos_bin_app v p) end
to_N_of_pos:forall (p0 : positive) (rest0 : string) (base0 : N), to_N (of_pos p0 rest0) base0 = to_N rest0 match base0 with | 0 => N.pos p0 | N.pos v => N.pos (pos_bin_app v p0) end
p:positive
rest:string
base:N

to_N (of_pos p rest) base = to_N rest match base with | 0 => N.pos p | N.pos v => N.pos (pos_bin_app v p) end
destruct p as [p|p|]; destruct base; try reflexivity; cbn; rewrite to_N_of_pos; reflexivity. Qed. End Raw. Definition of_pos (p : positive) : string := String "0" (String "b" (Raw.of_pos p "")). Definition of_N (n : N) : string := match n with | N0 => "0b0" | Npos p => of_pos p end. Definition of_Z (z : Z) : string := match z with | Zneg p => String "-" (of_pos p) | Z0 => "0b0" | Zpos p => of_pos p end. Definition of_nat (n : nat) : string := of_N (N.of_nat n). Definition to_N (s : string) : N := match s with | String s0 (String sb s) => if ascii_dec s0 "0" then if ascii_dec sb "b" then Raw.to_N s N0 else N0 else N0 | _ => N0 end. Definition to_pos (s : string) : positive := match to_N s with | N0 => 1 | Npos p => p end. Definition to_Z (s : string) : Z := let '(is_neg, n) := match s with | String s0 s' => if ascii_dec s0 "-" then (true, to_N s') else (false, to_N s) | EmptyString => (false, to_N s) end in match n with | N0 => Z0 | Npos p => if is_neg then Zneg p else Zpos p end. Definition to_nat (s : string) : nat := N.to_nat (to_N s).
n:N

to_N (of_N n) = n
n:N

to_N (of_N n) = n
destruct n; [ reflexivity | apply Raw.to_N_of_pos ]. Qed.
z:Z

to_Z (of_Z z) = z
z:Z

to_Z (of_Z z) = z
cbv [of_Z to_Z]; destruct z as [|z|z]; cbn; try reflexivity; rewrite Raw.to_N_of_pos; cbn; reflexivity. Qed.
n:nat

to_nat (of_nat n) = n
n:nat

to_nat (of_nat n) = n
cbv [to_nat of_nat]; rewrite to_N_of_N, Nnat.Nat2N.id; reflexivity. Qed.
p:positive

to_pos (of_pos p) = p
p:positive

to_pos (of_pos p) = p
cbv [of_pos to_pos to_N]; cbn; rewrite Raw.to_N_of_pos; cbn; reflexivity. Qed. Example of_pos_1 : of_pos 1 = "0b1" := eq_refl. Example of_pos_2 : of_pos 2 = "0b10" := eq_refl. Example of_pos_3 : of_pos 3 = "0b11" := eq_refl. Example of_N_0 : of_N 0 = "0b0" := eq_refl. Example of_Z_0 : of_Z 0 = "0b0" := eq_refl. Example of_Z_m1 : of_Z (-1) = "-0b1" := eq_refl. Example of_nat_0 : of_nat 0 = "0b0" := eq_refl.