Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import DecidableType OrderedType OrderedTypeEx.
Set Implicit Arguments.
Unset Strict Implicit.
NB: This file is here only for compatibility with earlier version of FSets and FMap. Please use Structures/Equalities.v directly now.

Examples of Decidable Type structures.

A particular case of DecidableType where the equality is the usual one of Coq.
Module Type UsualDecidableType := Equalities.UsualDecidableTypeOrig.
a UsualDecidableType is in particular an DecidableType.
Module UDT_to_DT (U:UsualDecidableType) <: DecidableType := U.
an shortcut for easily building a UsualDecidableType
Module Type MiniDecidableType := Equalities.MiniDecidableType.

Module Make_UDT (M:MiniDecidableType) <: UsualDecidableType
 := Equalities.Make_UDT M.
An OrderedType can now directly be seen as a DecidableType
Module OT_as_DT (O:OrderedType) <: DecidableType := O.
(Usual) Decidable Type for nat, positive, N, Z
Module Nat_as_DT <: UsualDecidableType := Nat_as_OT.
Module Positive_as_DT <: UsualDecidableType := Positive_as_OT.
Module N_as_DT <: UsualDecidableType := N_as_OT.
Module Z_as_DT <: UsualDecidableType := Z_as_OT.
From two decidable types, we can build a new DecidableType over their cartesian product.
Module PairDecidableType(D1 D2:DecidableType) <: DecidableType.

 Definition t := prod D1.t D2.t.

 Definition eq x y := D1.eq (fst x) (fst y) /\ D2.eq (snd x) (snd y).

 

forall x : t, eq x x

forall x : t, eq x x
intros (x1,x2); red; simpl; auto. Qed.

forall x y : t, eq x y -> eq y x

forall x y : t, eq x y -> eq y x
intros (x1,x2) (y1,y2); unfold eq; simpl; intuition. Qed.

forall x y z : t, eq x y -> eq y z -> eq x z

forall x y z : t, eq x y -> eq y z -> eq x z
intros (x1,x2) (y1,y2) (z1,z2); unfold eq; simpl; intuition eauto. Qed.

forall x y : D1.t * D2.t, {eq x y} + {~ eq x y}

forall x y : D1.t * D2.t, {eq x y} + {~ eq x y}
x1:D1.t
x2:D2.t
y1:D1.t
y2:D2.t

{D1.eq x1 y1 /\ D2.eq x2 y2} + {~ (D1.eq x1 y1 /\ D2.eq x2 y2)}
destruct (D1.eq_dec x1 y1); destruct (D2.eq_dec x2 y2); intuition. Defined. End PairDecidableType.
Similarly for pairs of UsualDecidableType
Module PairUsualDecidableType(D1 D2:UsualDecidableType) <: UsualDecidableType.
 Definition t := prod D1.t D2.t.
 Definition eq := @eq t.
 Definition eq_refl := @eq_refl t.
 Definition eq_sym := @eq_sym t.
 Definition eq_trans := @eq_trans t.
 

forall x y : t, {eq x y} + {~ eq x y}

forall x y : t, {eq x y} + {~ eq x y}
intros (x1,x2) (y1,y2); destruct (D1.eq_dec x1 y1); destruct (D2.eq_dec x2 y2); unfold eq, D1.eq, D2.eq in *; simpl; (left; f_equal; auto; fail) || (right; injection; auto). Defined. End PairUsualDecidableType.