Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Author: Cristina Cornes
From : Constructing Recursion Operators in Type Theory
L. Paulson JSC (1986) 2, 325-355
Require Import Relation_Operators. Section Wf_Disjoint_Union. Variables A B : Type. Variable leA : A -> A -> Prop. Variable leB : B -> B -> Prop. Notation Le_AsB := (le_AsB A B leA leB).A, B:TypeleA:A -> A -> PropleB:B -> B -> Propforall x : A, Acc leA x -> Acc Le_AsB (inl x)A, B:TypeleA:A -> A -> PropleB:B -> B -> Propforall x : A, Acc leA x -> Acc Le_AsB (inl x)A, B:TypeleA:A -> A -> PropleB:B -> B -> Propx:AH:forall y : A, leA y x -> Acc leA yH0:forall y : A, leA y x -> Acc Le_AsB (inl y)Acc Le_AsB (inl x)A, B:TypeleA:A -> A -> PropleB:B -> B -> Propx:AH:forall y0 : A, leA y0 x -> Acc leA y0H0:forall y0 : A, leA y0 x -> Acc Le_AsB (inl y0)y:(A + B)%typeH2:Le_AsB y (inl x)Acc Le_AsB yauto with sets. Qed.A, B:TypeleA:A -> A -> PropleB:B -> B -> Propx:AH:forall y0 : A, leA y0 x -> Acc leA y0H0:forall y0 : A, leA y0 x -> Acc Le_AsB (inl y0)y:(A + B)%typex0:AH1:leA x0 xAcc Le_AsB (inl x0)A, B:TypeleA:A -> A -> PropleB:B -> B -> Propwell_founded leA -> forall x : B, Acc leB x -> Acc Le_AsB (inr x)A, B:TypeleA:A -> A -> PropleB:B -> B -> Propwell_founded leA -> forall x : B, Acc leB x -> Acc Le_AsB (inr x)A, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAx:BH0:forall y : B, leB y x -> Acc leB yH1:forall y : B, leB y x -> Acc Le_AsB (inr y)Acc Le_AsB (inr x)A, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAx:BH0:forall y0 : B, leB y0 x -> Acc leB y0H1:forall y0 : B, leB y0 x -> Acc Le_AsB (inr y0)y:(A + B)%typeH3:Le_AsB y (inr x)Acc Le_AsB yapply acc_A_sum; auto with sets. Qed.A, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAx:BH0:forall y0 : B, leB y0 x -> Acc leB y0H1:forall y0 : B, leB y0 x -> Acc Le_AsB (inr y0)y:(A + B)%typex0:AAcc Le_AsB (inl x0)A, B:TypeleA:A -> A -> PropleB:B -> B -> Propwell_founded leA -> well_founded leB -> well_founded Le_AsBA, B:TypeleA:A -> A -> PropleB:B -> B -> Propwell_founded leA -> well_founded leB -> well_founded Le_AsBA, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAH0:well_founded leBwell_founded Le_AsBA, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAH0:well_founded leBforall a : A + B, Acc Le_AsB aA, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAH0:well_founded leBa:AAcc Le_AsB (inl a)A, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAH0:well_founded leBb:BAcc Le_AsB (inr b)A, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAH0:well_founded leBa:AAcc Le_AsB (inl a)apply (H a).A, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAH0:well_founded leBa:AAcc leA aA, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAH0:well_founded leBb:BAcc Le_AsB (inr b)apply (H0 b). Qed. End Wf_Disjoint_Union.A, B:TypeleA:A -> A -> PropleB:B -> B -> PropH:well_founded leAH0:well_founded leBb:BAcc leB b