Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(**********************************************************************)
The integer logarithms with base 2.
THIS FILE IS DEPRECATED. Please rather use Z.log2 (or Z.log2_up), which are defined in BinIntDef, and whose properties can be found in BinInt.Z.
(*  There are three logarithms defined here,
    depending on the rounding of the real 2-based logarithm:
    - [Log_inf]: [y = (Log_inf x) iff 2^y <= x < 2^(y+1)]
      i.e. [Log_inf x] is the biggest integer that is smaller than [Log x]
    - [Log_sup]: [y = (Log_sup x) iff 2^(y-1) < x <= 2^y]
      i.e. [Log_inf x] is the smallest integer that is bigger than [Log x]
    - [Log_nearest]: [y= (Log_nearest x) iff 2^(y-1/2) < x <= 2^(y+1/2)]
      i.e. [Log_nearest x] is the integer nearest from [Log x] *)

Require Import ZArith_base Omega Zcomplements Zpower.
Local Open Scope Z_scope.

Section Log_pos. (* Log of positive integers *)
First we build log_inf and log_sup
  Fixpoint log_inf (p:positive) : Z :=
    match p with
      | xH => 0 (* 1 *)
      | xO q => Z.succ (log_inf q)       (* 2n *)
      | xI q => Z.succ (log_inf q)       (* 2n+1 *)
    end.

  Fixpoint log_sup (p:positive) : Z :=
    match p with
      | xH => 0	(* 1 *)
      | xO n => Z.succ (log_sup n) (* 2n *)
      | xI n => Z.succ (Z.succ (log_inf n))	(* 2n+1 *)
    end.

 Hint Unfold log_inf log_sup : core.

  

forall p : positive, Z.pos (Pos.size p) = Z.succ (log_inf p)

forall p : positive, Z.pos (Pos.size p) = Z.succ (log_inf p)
induction p; simpl; now rewrite ?Pos2Z.inj_succ, ?IHp. Qed.

forall p : positive, Z.log2 (Z.pos p) = log_inf p

forall p : positive, Z.log2 (Z.pos p) = log_inf p

forall p : positive, match p with | (p0~1)%positive | (p0~0)%positive => Z.pos (Pos.size p0) | 1%positive => 0 end = log_inf p
destruct p; simpl; trivial; apply Psize_log_inf. Qed.

forall p : positive, Z.log2_up (Z.pos p) = log_sup p

forall p : positive, Z.log2_up (Z.pos p) = log_sup p
p:positive
IHp:Z.log2_up (Z.pos p) = log_sup p

Z.log2_up (Z.pos p~1) = Z.succ (Z.succ (log_inf p))
p:positive
IHp:Z.log2_up (Z.pos p) = log_sup p
Z.log2_up (Z.pos p~0) = Z.succ (log_sup p)

Z.log2_up 1 = 0
p:positive
IHp:Z.log2_up (Z.pos p) = log_sup p

Z.log2_up (Z.pos p~1) = Z.succ (Z.succ (log_inf p))
p:positive
IHp:Z.log2_up (Z.pos p) = log_sup p

Z.log2_up (2 * Z.pos p + 1) = Z.succ (Z.succ (log_inf p))
p:positive
IHp:Z.log2_up (Z.pos p) = log_sup p

2 + log_inf p = Z.succ (Z.succ (log_inf p))
p:positive
IHp:Z.log2_up (Z.pos p) = log_sup p

2 + log_inf p = log_inf p + 1 + 1
now rewrite !(Z.add_comm _ 1), Z.add_assoc.
p:positive
IHp:Z.log2_up (Z.pos p) = log_sup p

Z.log2_up (Z.pos p~0) = Z.succ (log_sup p)
p:positive
IHp:Z.log2_up (Z.pos p) = log_sup p

Z.log2_up (2 * Z.pos p) = Z.succ (log_sup p)
now rewrite Z.log2_up_double, IHp.

Z.log2_up 1 = 0
reflexivity. Qed.
Then we give the specifications of log_inf and log_sup and prove their validity
  Hint Resolve Z.le_trans: zarith.

  

forall x : positive, 0 <= log_inf x /\ two_p (log_inf x) <= Z.pos x < two_p (Z.succ (log_inf x))

forall x : positive, 0 <= log_inf x /\ two_p (log_inf x) <= Z.pos x < two_p (Z.succ (log_inf x))
simple induction x; intros; simpl; [ elim H; intros Hp HR; clear H; split; [ auto with zarith | rewrite two_p_S with (x := Z.succ (log_inf p)) by (apply Z.le_le_succ_r; trivial); rewrite two_p_S by trivial; rewrite two_p_S in HR by trivial; rewrite (BinInt.Pos2Z.inj_xI p); omega ] | elim H; intros Hp HR; clear H; split; [ auto with zarith | rewrite two_p_S with (x := Z.succ (log_inf p)) by (apply Z.le_le_succ_r; trivial); rewrite two_p_S by trivial; rewrite two_p_S in HR by trivial; rewrite (BinInt.Pos2Z.inj_xO p); omega ] | unfold two_power_pos; unfold shift_pos; simpl; omega ]. Qed. Definition log_inf_correct1 (p:positive) := proj1 (log_inf_correct p). Definition log_inf_correct2 (p:positive) := proj2 (log_inf_correct p). Opaque log_inf_correct1 log_inf_correct2. Hint Resolve log_inf_correct1 log_inf_correct2: zarith.

forall p : positive, 0 <= log_sup p

forall p : positive, 0 <= log_sup p
simple induction p; intros; simpl; auto with zarith. Qed.
For every p, either p is a power of two and (log_inf p)=(log_sup p) either (log_sup p)=(log_inf p)+1
  

forall p : positive, IF Z.pos p = two_p (log_inf p) then Z.pos p = two_p (log_sup p) else log_sup p = Z.succ (log_inf p)

forall p : positive, IF Z.pos p = two_p (log_inf p) then Z.pos p = two_p (log_sup p) else log_sup p = Z.succ (log_inf p)
simple induction p; intros; [ elim H; right; simpl; rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0)); rewrite BinInt.Pos2Z.inj_xI; unfold Z.succ; omega | elim H; clear H; intro Hif; [ left; simpl; rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0)); rewrite (two_p_S (log_sup p0) (log_sup_correct1 p0)); rewrite <- (proj1 Hif); rewrite <- (proj2 Hif); auto | right; simpl; rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0)); rewrite BinInt.Pos2Z.inj_xO; unfold Z.succ; omega ] | left; auto ]. Qed.

forall x : positive, two_p (Z.pred (log_sup x)) < Z.pos x <= two_p (log_sup x)

forall x : positive, two_p (Z.pred (log_sup x)) < Z.pos x <= two_p (log_sup x)
x:positive

two_p (Z.pred (log_sup x)) < Z.pos x <= two_p (log_sup x)
x:positive

Z.pos x = two_p (log_inf x) /\ Z.pos x = two_p (log_sup x) -> two_p (Z.pred (log_sup x)) < Z.pos x <= two_p (log_sup x)
x:positive
Z.pos x <> two_p (log_inf x) /\ log_sup x = Z.succ (log_inf x) -> two_p (Z.pred (log_sup x)) < Z.pos x <= two_p (log_sup x)
(* x is a power of two and [log_sup = log_inf] *)
x:positive
E1:Z.pos x = two_p (log_inf x)
E2:Z.pos x = two_p (log_sup x)

two_p (Z.pred (log_sup x)) < two_p (log_sup x) <= two_p (log_sup x)
x:positive
Z.pos x <> two_p (log_inf x) /\ log_sup x = Z.succ (log_inf x) -> two_p (Z.pred (log_sup x)) < Z.pos x <= two_p (log_sup x)
x:positive

Z.pos x <> two_p (log_inf x) /\ log_sup x = Z.succ (log_inf x) -> two_p (Z.pred (log_sup x)) < Z.pos x <= two_p (log_sup x)
x:positive
E1:Z.pos x <> two_p (log_inf x)
E2:log_sup x = Z.succ (log_inf x)

two_p (Z.pred (Z.succ (log_inf x))) < Z.pos x <= two_p (Z.succ (log_inf x))
x:positive
E1:Z.pos x <> two_p (log_inf x)
E2:log_sup x = Z.succ (log_inf x)

two_p (log_inf x) < Z.pos x <= two_p (Z.succ (log_inf x))
generalize (log_inf_correct2 x); omega. Qed.

forall p : positive, log_inf p <= log_sup p

forall p : positive, log_inf p <= log_sup p
simple induction p; simpl; intros; omega. Qed.

forall p : positive, log_sup p <= Z.succ (log_inf p)

forall p : positive, log_sup p <= Z.succ (log_inf p)
simple induction p; simpl; intros; omega. Qed.
Now it's possible to specify and build the Log rounded to the nearest
  Fixpoint log_near (x:positive) : Z :=
    match x with
      | xH => 0
      | xO xH => 1
      | xI xH => 2
      | xO y => Z.succ (log_near y)
      | xI y => Z.succ (log_near y)
    end.

  

forall p : positive, 0 <= log_near p

forall p : positive, 0 <= log_near p
p, p0:positive
H:0 <= log_near p0

forall p1 : positive, 0 <= match p1 with | 1%positive => 2 | _ => Z.succ (log_near p1) end -> 0 <= Z.succ (log_near p1~0)
p, p0:positive
H:0 <= log_near p0
forall p1 : positive, 0 <= match p1 with | 1%positive => 1 | _ => Z.succ (log_near p1) end -> 0 <= Z.succ (log_near p1~1)
p, p0:positive
H:0 <= log_near p0
p1:positive
H0:0 <= match p1 with | 1%positive => 2 | _ => Z.succ (log_near p1) end

0 <= log_near p1~0
p, p0:positive
H:0 <= log_near p0
forall p1 : positive, 0 <= match p1 with | 1%positive => 1 | _ => Z.succ (log_near p1) end -> 0 <= Z.succ (log_near p1~1)
p, p0:positive
H:0 <= log_near p0

forall p1 : positive, 0 <= match p1 with | 1%positive => 1 | _ => Z.succ (log_near p1) end -> 0 <= Z.succ (log_near p1~1)
p, p0:positive
H:0 <= log_near p0
p1:positive
H0:0 <= match p1 with | 1%positive => 1 | _ => Z.succ (log_near p1) end

0 <= log_near p1~1
generalize H0; now elim p1. Qed.

forall p : positive, log_near p = log_inf p \/ log_near p = log_sup p

forall p : positive, log_near p = log_inf p \/ log_near p = log_sup p
p:positive

forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~1 = log_inf p0~1 \/ log_near p0~1 = log_sup p0~1
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Einf:log_near p0 = log_inf p0

log_near p0~1 = log_inf p0~1 \/ log_near p0~1 = log_sup p0~1
p, p0:positive
Esup:log_near p0 = log_sup p0
log_near p0~1 = log_inf p0~1 \/ log_near p0~1 = log_sup p0~1
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Einf:log_near p0 = log_inf p0

match p0 with | 1%positive => 2 | _ => Z.succ (log_near p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_near p0) end = Z.succ (Z.succ (log_inf p0))
p, p0:positive
Esup:log_near p0 = log_sup p0
log_near p0~1 = log_inf p0~1 \/ log_near p0~1 = log_sup p0~1
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Einf:log_near p0 = log_inf p0

match p0 with | 1%positive => 2 | _ => Z.succ (log_inf p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_inf p0) end = Z.succ (Z.succ (log_inf p0))
p, p0:positive
Esup:log_near p0 = log_sup p0
log_near p0~1 = log_inf p0~1 \/ log_near p0~1 = log_sup p0~1
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Esup:log_near p0 = log_sup p0

log_near p0~1 = log_inf p0~1 \/ log_near p0~1 = log_sup p0~1
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Esup:log_near p0 = log_sup p0

match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (Z.succ (log_inf p0))
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Esup:log_near p0 = log_sup p0

Z.pos p0 = two_p (log_inf p0) /\ Z.pos p0 = two_p (log_sup p0) -> match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (Z.succ (log_inf p0))
p, p0:positive
Esup:log_near p0 = log_sup p0
Z.pos p0 <> two_p (log_inf p0) /\ log_sup p0 = Z.succ (log_inf p0) -> match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (Z.succ (log_inf p0))
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Esup:log_near p0 = log_sup p0

log_inf p0 <= log_sup p0 -> Z.pos p0 = two_p (log_inf p0) /\ Z.pos p0 = two_p (log_sup p0) -> match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (Z.succ (log_inf p0))
p, p0:positive
Esup:log_near p0 = log_sup p0
Z.pos p0 <> two_p (log_inf p0) /\ log_sup p0 = Z.succ (log_inf p0) -> match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (Z.succ (log_inf p0))
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Esup:log_near p0 = log_sup p0

log_sup p0 <= Z.succ (log_inf p0) -> log_inf p0 <= log_sup p0 -> Z.pos p0 = two_p (log_inf p0) /\ Z.pos p0 = two_p (log_sup p0) -> match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (Z.succ (log_inf p0))
p, p0:positive
Esup:log_near p0 = log_sup p0
Z.pos p0 <> two_p (log_inf p0) /\ log_sup p0 = Z.succ (log_inf p0) -> match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (Z.succ (log_inf p0))
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Esup:log_near p0 = log_sup p0

forall p1 : positive, log_sup p1~0 <= Z.succ (log_inf p1~0) -> log_inf p1~0 <= log_sup p1~0 -> Z.pos p1~0 = two_p (log_inf p1~0) /\ Z.pos p1~0 = two_p (log_sup p1~0) -> Z.succ (log_sup p1~0) = Z.succ (log_inf p1~0) \/ Z.succ (log_sup p1~0) = Z.succ (Z.succ (log_inf p1~0))
p, p0:positive
Esup:log_near p0 = log_sup p0
Z.pos p0 <> two_p (log_inf p0) /\ log_sup p0 = Z.succ (log_inf p0) -> match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (Z.succ (log_inf p0))
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Esup:log_near p0 = log_sup p0

Z.pos p0 <> two_p (log_inf p0) /\ log_sup p0 = Z.succ (log_inf p0) -> match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 2 | _ => Z.succ (log_sup p0) end = Z.succ (Z.succ (log_inf p0))
p:positive
forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p:positive

forall p0 : positive, log_near p0 = log_inf p0 \/ log_near p0 = log_sup p0 -> log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Einf:log_near p0 = log_inf p0

log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p, p0:positive
Esup:log_near p0 = log_sup p0
log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Einf:log_near p0 = log_inf p0

match p0 with | 1%positive => 1 | _ => Z.succ (log_near p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 1 | _ => Z.succ (log_near p0) end = Z.succ (log_sup p0)
p, p0:positive
Esup:log_near p0 = log_sup p0
log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Einf:log_near p0 = log_inf p0

match p0 with | 1%positive => 1 | _ => Z.succ (log_inf p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 1 | _ => Z.succ (log_inf p0) end = Z.succ (log_sup p0)
p, p0:positive
Esup:log_near p0 = log_sup p0
log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Esup:log_near p0 = log_sup p0

log_near p0~0 = log_inf p0~0 \/ log_near p0~0 = log_sup p0~0
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Esup:log_near p0 = log_sup p0

match p0 with | 1%positive => 1 | _ => Z.succ (log_near p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 1 | _ => Z.succ (log_near p0) end = Z.succ (log_sup p0)
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p, p0:positive
Esup:log_near p0 = log_sup p0

match p0 with | 1%positive => 1 | _ => Z.succ (log_sup p0) end = Z.succ (log_inf p0) \/ match p0 with | 1%positive => 1 | _ => Z.succ (log_sup p0) end = Z.succ (log_sup p0)
p:positive
log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
p:positive

log_near 1 = log_inf 1 \/ log_near 1 = log_sup 1
auto. Qed. End Log_pos. Section divers.
Number of significative digits.
  Definition N_digits (x:Z) :=
    match x with
      | Zpos p => log_inf p
      | Zneg p => log_inf p
      | Z0 => 0
    end.

  

forall x : Z, 0 <= N_digits x

forall x : Z, 0 <= N_digits x
simple induction x; simpl; [ apply Z.le_refl | exact log_inf_correct1 | exact log_inf_correct1 ]. Qed.

forall n : nat, log_inf (shift_nat n 1) = Z.of_nat n

forall n : nat, log_inf (shift_nat n 1) = Z.of_nat n
simple induction n; intros; [ try trivial | rewrite Nat2Z.inj_succ; rewrite <- H; reflexivity ]. Qed.

forall n : nat, log_sup (shift_nat n 1) = Z.of_nat n

forall n : nat, log_sup (shift_nat n 1) = Z.of_nat n
simple induction n; intros; [ try trivial | rewrite Nat2Z.inj_succ; rewrite <- H; reflexivity ]. Qed.
Is_power p means that p is a power of two
  Fixpoint Is_power (p:positive) : Prop :=
    match p with
      | xH => True
      | xO q => Is_power q
      | xI q => False
    end.

  

forall p : positive, Is_power p <-> (exists y : nat, p = shift_nat y 1)

forall p : positive, Is_power p <-> (exists y : nat, p = shift_nat y 1)
split; [ elim p; [ simpl; tauto | simpl; intros; generalize (H H0); intro H1; elim H1; intros y0 Hy0; exists (S y0); rewrite Hy0; reflexivity | intro; exists 0%nat; reflexivity ] | intros; elim H; intros; rewrite H0; elim x; intros; simpl; trivial ]. Qed.

forall p : positive, Is_power p \/ ~ Is_power p

forall p : positive, Is_power p \/ ~ Is_power p
simple induction p; [ intros; right; simpl; tauto | intros; elim H; [ intros; left; simpl; exact H0 | intros; right; simpl; exact H0 ] | left; simpl; trivial ]. Qed. End divers.