Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
THIS FILE IS DEPRECATED.
Require Export BinInt Zcompare Zorder. Local Open Scope Z_scope.
Definition Z.max is now BinInt.Z.max.
Exact compatibility
Notation Zmax_right := Z.max_r (only parsing). Notation Zle_max_compat_r := Z.max_le_compat_r (only parsing). Notation Zle_max_compat_l := Z.max_le_compat_l (only parsing). Notation Zmax_idempotent := Z.max_id (only parsing). Notation Zmax_n_n := Z.max_id (only parsing). Notation Zmax_irreducible_dec := Z.max_dec (only parsing). Notation Zmax_le_prime := Z.max_le (only parsing). Notation Zmax_SS := Z.succ_max_distr (only parsing). Notation Zplus_max_distr_l := Z.add_max_distr_l (only parsing). Notation Zplus_max_distr_r := Z.add_max_distr_r (only parsing). Notation Zmax_plus := Z.add_max_distr_r (only parsing). Notation Zmax1 := Z.le_max_l (only parsing). Notation Zmax2 := Z.le_max_r (only parsing). Notation Zmax_irreducible_inf := Z.max_dec (only parsing). Notation Zmax_le_prime_inf := Z.max_le (only parsing). Notation Zpos_max := Pos2Z.inj_max (only parsing). Notation Zpos_minus := Pos2Z.inj_sub_max (only parsing).
Slightly different lemmas
x, y:Zx >= y /\ Z.max x y = x \/ x < y /\ Z.max x y = yx, y:Zx >= y /\ Z.max x y = x \/ x < y /\ Z.max x y = ydestruct (Z.max_spec x y); auto. Qed.x, y:Zy <= x /\ Z.max x y = x \/ x < y /\ Z.max x y = yn, m:Zn >= m -> Z.max n m = nn, m:Zn >= m -> Z.max n m = napply Z.max_l. Qed.n, m:Zm <= n -> Z.max n m = np:positiveZ.max 1 (Z.pos p) = Z.pos pnow destruct p. Qed.p:positiveZ.max 1 (Z.pos p) = Z.pos p