Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
THIS FILE IS DEPRECATED.
Require Export BinInt Zcompare Zorder.

Local Open Scope Z_scope.
Definition Z.max is now BinInt.Z.max.
Exact compatibility
Notation Zmax_right := Z.max_r (only parsing).
Notation Zle_max_compat_r := Z.max_le_compat_r (only parsing).
Notation Zle_max_compat_l := Z.max_le_compat_l (only parsing).
Notation Zmax_idempotent := Z.max_id (only parsing).
Notation Zmax_n_n := Z.max_id (only parsing).
Notation Zmax_irreducible_dec := Z.max_dec (only parsing).
Notation Zmax_le_prime := Z.max_le (only parsing).
Notation Zmax_SS := Z.succ_max_distr (only parsing).
Notation Zplus_max_distr_l := Z.add_max_distr_l (only parsing).
Notation Zplus_max_distr_r := Z.add_max_distr_r (only parsing).
Notation Zmax_plus := Z.add_max_distr_r (only parsing).
Notation Zmax1 := Z.le_max_l (only parsing).
Notation Zmax2 := Z.le_max_r (only parsing).
Notation Zmax_irreducible_inf := Z.max_dec (only parsing).
Notation Zmax_le_prime_inf := Z.max_le (only parsing).
Notation Zpos_max := Pos2Z.inj_max (only parsing).
Notation Zpos_minus := Pos2Z.inj_sub_max (only parsing).
Slightly different lemmas
x, y:Z

x >= y /\ Z.max x y = x \/ x < y /\ Z.max x y = y
x, y:Z

x >= y /\ Z.max x y = x \/ x < y /\ Z.max x y = y
x, y:Z

y <= x /\ Z.max x y = x \/ x < y /\ Z.max x y = y
destruct (Z.max_spec x y); auto. Qed.
n, m:Z

n >= m -> Z.max n m = n
n, m:Z

n >= m -> Z.max n m = n
n, m:Z

m <= n -> Z.max n m = n
apply Z.max_l. Qed.
p:positive

Z.max 1 (Z.pos p) = Z.pos p
p:positive

Z.max 1 (Z.pos p) = Z.pos p
now destruct p. Qed.