Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import BinInt Ring_theory. Local Open Scope Z_scope.
Nota : this file is mostly deprecated. The definition of Z.pow
and its usual properties are now provided by module BinInt.Z.
Notation Zpower_pos := Z.pow_pos (only parsing). Notation Zpower := Z.pow (only parsing). Notation Zpower_0_r := Z.pow_0_r (only parsing). Notation Zpower_succ_r := Z.pow_succ_r (only parsing). Notation Zpower_neg_r := Z.pow_neg_r (only parsing). Notation Zpower_Ppow := Pos2Z.inj_pow (only parsing).power_theory 1 Z.mul eq Z.of_N Z.powpower_theory 1 Z.mul eq Z.of_N Z.powforall (r : Z) (n : N), r ^ Z.of_N n = pow_N 1 Z.mul r nr:Zn:Nr ^ Z.of_N n = pow_N 1 Z.mul r nr:Zp:positiveZ.pow_pos r p = pow_pos Z.mul r pr:Zp:positivePos.iter (Z.mul r) 1 p = pow_pos Z.mul r pr:Zp:positivePos.iter (Z.mul r) 1 p = pow_pos Z.mul r p * 1induction p; simpl; intros; rewrite ?IHp, ?Z.mul_assoc; trivial. Qed.r:Zp:positiveforall z : Z, Pos.iter (Z.mul r) z p = pow_pos Z.mul r p * z