Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Nnat ZArith_base Lia ZArithRing Zdiv Morphisms.

Local Open Scope Z_scope.
This file provides results about the Round-Toward-Zero Euclidean division Z.quotrem, whose projections are Z.quot (noted ÷) and Z.rem.
This division and Z.div agree only on positive numbers. Otherwise, Z.div performs Round-Toward-Bottom (a.k.a Floor).
This Z.quot is compatible with the division of usual programming languages such as Ocaml. In addition, it has nicer properties with respect to opposite and other usual operations.
The definition of this division is now in file BinIntDef, while most of the results about here are now in the main module BinInt.Z, thanks to the generic "Numbers" layer. Remain here:
Notation Ndiv_Zquot := N2Z.inj_quot (only parsing).
Notation Nmod_Zrem := N2Z.inj_rem (only parsing).
Notation Z_quot_rem_eq := Z.quot_rem' (only parsing).
Notation Zrem_lt := Z.rem_bound_abs (only parsing).
Notation Z_quot_mult := Z.quot_mul (only parsing).
Particular values taken for a÷0 and (Z.rem a 0). We avise to not rely on these arbitrary values.
a:Z

a ÷ 0 = 0
a:Z

a ÷ 0 = 0
now destruct a. Qed.
a:Z

Z.rem a 0 = a
a:Z

Z.rem a 0 = a
now destruct a. Qed.
The following results are expressed without the b<>0 condition whenever possible.
a:Z

Z.rem 0 a = 0
a:Z

Z.rem 0 a = 0
now destruct a. Qed.
a:Z

0 ÷ a = 0
a:Z

0 ÷ a = 0
now destruct a. Qed. Hint Resolve Zrem_0_l Zrem_0_r Zquot_0_l Zquot_0_r Z.quot_1_r Z.rem_1_r : zarith. Ltac zero_or_not a := destruct (Z.eq_decidable a 0) as [->|?]; [rewrite ?Zquot_0_l, ?Zrem_0_l, ?Zquot_0_r, ?Zrem_0_r; auto with zarith|].
a:Z

Z.rem a a = 0
a:Z

Z.rem a a = 0
a:Z
H:a <> 0

Z.rem a a = 0
now apply Z.rem_same. Qed.
a, b:Z

Z.rem (a * b) b = 0
a, b:Z

Z.rem (a * b) b = 0
a, b:Z
H:b <> 0

Z.rem (a * b) b = 0
now apply Z.rem_mul. Qed.

Division and Opposite

(* The precise equalities that are invalid with "historic" Zdiv. *)

a, b:Z

- a ÷ b = - (a ÷ b)
a, b:Z

- a ÷ b = - (a ÷ b)
a, b:Z
H:b <> 0

- a ÷ b = - (a ÷ b)
now apply Z.quot_opp_l. Qed.
a, b:Z

a ÷ - b = - (a ÷ b)
a, b:Z

a ÷ - b = - (a ÷ b)
a, b:Z
H:b <> 0

a ÷ - b = - (a ÷ b)
now apply Z.quot_opp_r. Qed.
a, b:Z

Z.rem (- a) b = - Z.rem a b
a, b:Z

Z.rem (- a) b = - Z.rem a b
a, b:Z
H:b <> 0

Z.rem (- a) b = - Z.rem a b
now apply Z.rem_opp_l. Qed.
a, b:Z

Z.rem a (- b) = Z.rem a b
a, b:Z

Z.rem a (- b) = Z.rem a b
a, b:Z
H:b <> 0

Z.rem a (- b) = Z.rem a b
now apply Z.rem_opp_r. Qed.
a, b:Z

- a ÷ - b = a ÷ b
a, b:Z

- a ÷ - b = a ÷ b
a, b:Z
H:b <> 0

- a ÷ - b = a ÷ b
now apply Z.quot_opp_opp. Qed.
a, b:Z

Z.rem (- a) (- b) = - Z.rem a b
a, b:Z

Z.rem (- a) (- b) = - Z.rem a b
a, b:Z
H:b <> 0

Z.rem (- a) (- b) = - Z.rem a b
now apply Z.rem_opp_opp. Qed.
The sign of the remainder is the one of a. Due to the possible nullity of a, a general result is to be stated in the following form:
a, b:Z

0 <= Z.sgn (Z.rem a b) * Z.sgn a
a, b:Z

0 <= Z.sgn (Z.rem a b) * Z.sgn a
a:Z

0 <= Z.sgn a * Z.sgn a
a, b:Z
H:b <> 0
0 <= Z.sgn (Z.rem a b) * Z.sgn a
a:Z

0 <= Z.sgn a * Z.sgn a
apply Z.square_nonneg.
a, b:Z
H:b <> 0

0 <= Z.sgn (Z.rem a b) * Z.sgn a
a, b:Z
H:b <> 0
H0:Z.rem a b <> 0

0 <= Z.sgn (Z.rem a b) * Z.sgn a
a, b:Z
H:b <> 0
H0:Z.rem a b <> 0

0 <= Z.sgn a * Z.sgn a
apply Z.square_nonneg. Qed.
This can also be said in a simpler way:
a, b:Z

0 <= Z.rem a b * a
a, b:Z

0 <= Z.rem a b * a
a:Z

0 <= a * a
a, b:Z
H:b <> 0
0 <= Z.rem a b * a
a:Z

0 <= a * a
apply Z.square_nonneg.
a, b:Z
H:b <> 0

0 <= Z.rem a b * a
now apply Z.rem_sign_mul. Qed.
Reformulation of Z.rem_bound_abs in 2 then 4 particular cases.
a, b:Z

0 <= a -> b <> 0 -> 0 <= Z.rem a b < Z.abs b
a, b:Z

0 <= a -> b <> 0 -> 0 <= Z.rem a b < Z.abs b
intros; generalize (Z.rem_nonneg a b) (Z.rem_bound_abs a b); lia. Qed.
a, b:Z

a <= 0 -> b <> 0 -> - Z.abs b < Z.rem a b <= 0
a, b:Z

a <= 0 -> b <> 0 -> - Z.abs b < Z.rem a b <= 0
intros; generalize (Z.rem_nonpos a b) (Z.rem_bound_abs a b); lia. Qed.
a, b:Z

0 <= a -> 0 < b -> 0 <= Z.rem a b < b
a, b:Z

0 <= a -> 0 < b -> 0 <= Z.rem a b < b
intros; generalize (Zrem_lt_pos a b); lia. Qed.
a, b:Z

0 <= a -> b < 0 -> 0 <= Z.rem a b < - b
a, b:Z

0 <= a -> b < 0 -> 0 <= Z.rem a b < - b
intros; generalize (Zrem_lt_pos a b); lia. Qed.
a, b:Z

a <= 0 -> 0 < b -> - b < Z.rem a b <= 0
a, b:Z

a <= 0 -> 0 < b -> - b < Z.rem a b <= 0
intros; generalize (Zrem_lt_neg a b); lia. Qed.
a, b:Z

a <= 0 -> b < 0 -> b < Z.rem a b <= 0
a, b:Z

a <= 0 -> b < 0 -> b < Z.rem a b <= 0
intros; generalize (Zrem_lt_neg a b); lia. Qed.

Unicity results

Definition Remainder a b r :=
  (0 <= a /\ 0 <= r < Z.abs b) \/ (a <= 0 /\ -Z.abs b < r <= 0).

Definition Remainder_alt a b r :=
  Z.abs r < Z.abs b /\ 0 <= r * a.


forall a b r : Z, Remainder a b r <-> Remainder_alt a b r

forall a b r : Z, Remainder a b r <-> Remainder_alt a b r
a, b, r:Z
H:0 <= a
H0:0 <= r
H2:r < Z.abs b

Z.abs r < Z.abs b
a, b, r:Z
H:a <= 0
H0:- Z.abs b < r
H2:r <= 0
Z.abs r < Z.abs b
a, b, r:Z
H:a <= 0
H0:- Z.abs b < r
H2:r <= 0
0 <= r * a
a, b, r:Z
H0:Z.abs r < Z.abs b
H1:0 <= r * a
0 <= a /\ 0 <= r < Z.abs b \/ a <= 0 /\ - Z.abs b < r <= 0
a, b, r:Z
H:0 <= a
H0:0 <= r
H2:r < Z.abs b

Z.abs r < Z.abs b
lia.
a, b, r:Z
H:a <= 0
H0:- Z.abs b < r
H2:r <= 0

Z.abs r < Z.abs b
lia.
a, b, r:Z
H:a <= 0
H0:- Z.abs b < r
H2:r <= 0

0 <= r * a
a, b, r:Z
H:a <= 0
H0:- Z.abs b < r
H2:r <= 0

0 <= - r * - a
apply Z.mul_nonneg_nonneg; lia.
a, b, r:Z
H0:Z.abs r < Z.abs b
H1:0 <= r * a

0 <= a /\ 0 <= r < Z.abs b \/ a <= 0 /\ - Z.abs b < r <= 0
a, b, r:Z
H0:Z.abs r < Z.abs b
H1:0 <= r * a

0 <= Z.sgn r * Z.sgn a
a, b, r:Z
H0:Z.abs r < Z.abs b
H1:0 <= r * a
H:0 <= Z.sgn r * Z.sgn a
0 <= a /\ 0 <= r < Z.abs b \/ a <= 0 /\ - Z.abs b < r <= 0
a, b, r:Z
H0:Z.abs r < Z.abs b
H1:0 <= r * a

0 <= Z.sgn r * Z.sgn a
rewrite <-Z.sgn_mul, Z.sgn_nonneg; auto.
a, b, r:Z
H0:Z.abs r < Z.abs b
H1:0 <= r * a
H:0 <= Z.sgn r * Z.sgn a

0 <= a /\ 0 <= r < Z.abs b \/ a <= 0 /\ - Z.abs b < r <= 0
destruct r; simpl Z.sgn in *; lia. Qed.
a, b, q, r:Z

Remainder a b r -> a = b * q + r -> q = a ÷ b /\ r = Z.rem a b
a, b, q, r:Z

Remainder a b r -> a = b * q + r -> q = a ÷ b /\ r = Z.rem a b
a, b, q, r:Z
H:0 <= a
H0:0 <= r < Z.abs b
H1:a = b * q + r

q = a ÷ b /\ r = Z.rem a b
a, b, q, r:Z
H:a <= 0
H0:- Z.abs b < r <= 0
H1:a = b * q + r
q = a ÷ b /\ r = Z.rem a b
a, b, q, r:Z
H:0 <= a
H0:0 <= r < Z.abs b
H1:a = b * q + r

0 <= Z.rem a b < Z.abs b
a, b, q, r:Z
H:0 <= a
H0:0 <= r < Z.abs b
H1:a = b * q + r
b * q + r = b * (a ÷ b) + Z.rem a b
a, b, q, r:Z
H:a <= 0
H0:- Z.abs b < r <= 0
H1:a = b * q + r
q = a ÷ b /\ r = Z.rem a b
a, b, q, r:Z
H:0 <= a
H0:0 <= r < Z.abs b
H1:a = b * q + r

b <> 0
a, b, q, r:Z
H:0 <= a
H0:0 <= r < Z.abs b
H1:a = b * q + r
b * q + r = b * (a ÷ b) + Z.rem a b
a, b, q, r:Z
H:a <= 0
H0:- Z.abs b < r <= 0
H1:a = b * q + r
q = a ÷ b /\ r = Z.rem a b
a, b, q, r:Z
H:0 <= a
H0:0 <= r < Z.abs b
H1:a = b * q + r

b * q + r = b * (a ÷ b) + Z.rem a b
a, b, q, r:Z
H:a <= 0
H0:- Z.abs b < r <= 0
H1:a = b * q + r
q = a ÷ b /\ r = Z.rem a b
a, b, q, r:Z
H:a <= 0
H0:- Z.abs b < r <= 0
H1:a = b * q + r

q = a ÷ b /\ r = Z.rem a b
a, b, q, r:Z
H:a <= 0
H0:- Z.abs b < r <= 0
H1:a = b * q + r

q = - - a ÷ b /\ r = Z.rem (- - a) b
a, b, q, r:Z
H:a <= 0
H0:- Z.abs b < r <= 0
H1:a = b * q + r

q = - (- a ÷ b) /\ r = - Z.rem (- a) b
a, b, q, r:Z
H:a <= 0
H0:- Z.abs b < r <= 0
H1:a = b * q + r

(0 <= - r < Z.abs b -> 0 <= Z.rem (- a) b < Z.abs b -> b * - q + - r = b * (- a ÷ b) + Z.rem (- a) b -> - q = - a ÷ b /\ - r = Z.rem (- a) b) -> q = - (- a ÷ b) /\ r = - Z.rem (- a) b
a, b, q, r:Z
H:a <= 0
H0:- Z.abs b < r <= 0
H1:a = b * q + r

(0 <= - a -> b <> 0 -> 0 <= Z.rem (- a) b < Z.abs b) -> (0 <= - r < Z.abs b -> 0 <= Z.rem (- a) b < Z.abs b -> b * - q + - r = b * (- a ÷ b) + Z.rem (- a) b -> - q = - a ÷ b /\ - r = Z.rem (- a) b) -> q = - (- a ÷ b) /\ r = - Z.rem (- a) b
a, b, q, r:Z
H:a <= 0
H0:- Z.abs b < r <= 0
H1:a = b * q + r

(0 <= - a -> b <> 0 -> 0 <= Z.rem (- a) b < Z.abs b) -> (0 <= - r < Z.abs b -> 0 <= Z.rem (- a) b < Z.abs b -> - a = - a -> - q = - a ÷ b /\ - r = Z.rem (- a) b) -> q = - (- a ÷ b) /\ r = - Z.rem (- a) b
lia. Qed.
a, b, q, r:Z

Remainder a b r -> a = b * q + r -> q = a ÷ b
a, b, q, r:Z

Remainder a b r -> a = b * q + r -> q = a ÷ b
intros; destruct (Zquot_mod_unique_full a b q r); auto. Qed.
a, b, q, r:Z

Remainder a b r -> a = b * q + r -> r = Z.rem a b
a, b, q, r:Z

Remainder a b r -> a = b * q + r -> r = Z.rem a b
intros; destruct (Zquot_mod_unique_full a b q r); auto. Qed.

Order results about Zrem and Zquot

(* Division of positive numbers is positive. *)

a, b:Z

0 <= a -> 0 <= b -> 0 <= a ÷ b
a, b:Z

0 <= a -> 0 <= b -> 0 <= a ÷ b
a, b:Z
H:0 <= a
H0:0 <= b

0 <= a ÷ b
a, b:Z
H:0 <= a
H0:0 <= b
H1:b <> 0

0 <= a ÷ b
apply Z.quot_pos; auto with zarith. Qed.
As soon as the divisor is greater or equal than 2, the division is strictly decreasing.
a, b:Z

0 < a -> 2 <= b -> a ÷ b < a
a, b:Z

0 < a -> 2 <= b -> a ÷ b < a
a, b:Z
H:0 < a
H0:2 <= b

a ÷ b < a
apply Z.quot_lt; auto with zarith. Qed.
is compatible with a positive division.
a, b, c:Z

0 <= c -> a <= b -> a ÷ c <= b ÷ c
a, b, c:Z

0 <= c -> a <= b -> a ÷ c <= b ÷ c
a, b, c:Z
H:0 <= c
H0:a <= b

a ÷ c <= b ÷ c
a, b, c:Z
H:0 <= c
H0:a <= b
H1:c <> 0

a ÷ c <= b ÷ c
apply Z.quot_le_mono; auto with zarith. Qed.
With our choice of division, rounding of (a÷b) is always done toward 0:
a, b:Z

0 <= a -> 0 <= b * (a ÷ b) <= a
a, b:Z

0 <= a -> 0 <= b * (a ÷ b) <= a
a, b:Z
H:0 <= a

0 <= b * (a ÷ b) <= a
a, b:Z
H:0 <= a
H0:b <> 0

0 <= b * (a ÷ b) <= a
apply Z.mul_quot_le; auto with zarith. Qed.
a, b:Z

a <= 0 -> a <= b * (a ÷ b) <= 0
a, b:Z

a <= 0 -> a <= b * (a ÷ b) <= 0
a, b:Z
H:a <= 0

a <= b * (a ÷ b) <= 0
a, b:Z
H:a <= 0
H0:b <> 0

a <= b * (a ÷ b) <= 0
apply Z.mul_quot_ge; auto with zarith. Qed.
The previous inequalities between b*(a÷b) and a are exact iff the modulo is zero.
a, b:Z

a = b * (a ÷ b) <-> Z.rem a b = 0
a, b:Z

a = b * (a ÷ b) <-> Z.rem a b = 0
a, b:Z

a = b * (a ÷ b) <-> Z.rem a b = 0
a:Z

a = 0 * 0 <-> a = 0
a, b:Z
H:b <> 0
a = b * (a ÷ b) <-> Z.rem a b = 0
a, b:Z
H:b <> 0

a = b * (a ÷ b) <-> Z.rem a b = 0
apply Z.quot_exact; auto. Qed.
A modulo cannot grow beyond its starting point.
a, b:Z

0 <= a -> 0 <= b -> Z.rem a b <= a
a, b:Z

0 <= a -> 0 <= b -> Z.rem a b <= a
a, b:Z
H:0 <= a
H0:0 <= b

Z.rem a b <= a
a, b:Z
H:0 <= a
H0:0 <= b
H1:b <> 0

Z.rem a b <= a
apply Z.rem_le; auto with zarith. Qed.
Some additional inequalities about Zdiv.

forall a b q : Z, 0 < b -> a <= q * b -> a ÷ b <= q

forall a b q : Z, 0 < b -> a <= q * b -> a ÷ b <= q
intros a b q; rewrite Z.mul_comm; apply Z.quot_le_upper_bound. Qed.

forall a b q : Z, 0 <= a -> 0 < b -> a < q * b -> a ÷ b < q

forall a b q : Z, 0 <= a -> 0 < b -> a < q * b -> a ÷ b < q
intros a b q; rewrite Z.mul_comm; apply Z.quot_lt_upper_bound. Qed.

forall a b q : Z, 0 < b -> q * b <= a -> q <= a ÷ b

forall a b q : Z, 0 < b -> q * b <= a -> q <= a ÷ b
intros a b q; rewrite Z.mul_comm; apply Z.quot_le_lower_bound. Qed.

forall a b : Z, 0 <= Z.sgn (a ÷ b) * Z.sgn a * Z.sgn b

forall a b : Z, 0 <= Z.sgn (a ÷ b) * Z.sgn a * Z.sgn b
destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith; unfold Z.quot; simpl; destruct N.pos_div_eucl; simpl; destruct n; simpl; auto with zarith. Qed.

Relations between usual operations and Zmod and Zdiv

First, a result that used to be always valid with Zdiv, but must be restricted here. For instance, now (9+(-5)*2) rem 2 = -1 <> 1 = 9 rem 2

forall a b c : Z, 0 <= (a + b * c) * a -> Z.rem (a + b * c) c = Z.rem a c

forall a b c : Z, 0 <= (a + b * c) * a -> Z.rem (a + b * c) c = Z.rem a c
a, b, c:Z
H:0 <= (a + b * c) * a

Z.rem (a + b * c) c = Z.rem a c
a, b, c:Z
H:0 <= (a + b * c) * a
H0:c <> 0

Z.rem (a + b * c) c = Z.rem a c
apply Z.rem_add; auto with zarith. Qed.

forall a b c : Z, 0 <= (a + b * c) * a -> c <> 0 -> (a + b * c) ÷ c = a ÷ c + b

forall a b c : Z, 0 <= (a + b * c) * a -> c <> 0 -> (a + b * c) ÷ c = a ÷ c + b
a, b, c:Z
H:0 <= (a + b * c) * a
H0:c <> 0

(a + b * c) ÷ c = a ÷ c + b
apply Z.quot_add; auto with zarith. Qed.

forall a b c : Z, 0 <= (a * b + c) * c -> b <> 0 -> b <> 0 -> (a * b + c) ÷ b = a + c ÷ b

forall a b c : Z, 0 <= (a * b + c) * c -> b <> 0 -> b <> 0 -> (a * b + c) ÷ b = a + c ÷ b
a, b, c:Z
H:0 <= (a * b + c) * c
H0, H1:b <> 0

(a * b + c) ÷ b = a + c ÷ b
apply Z.quot_add_l; auto with zarith. Qed.
Cancellations.

forall a b c : Z, c <> 0 -> a * c ÷ (b * c) = a ÷ b

forall a b c : Z, c <> 0 -> a * c ÷ (b * c) = a ÷ b
a, b, c:Z
H:c <> 0

a * c ÷ (b * c) = a ÷ b
a, b, c:Z
H:c <> 0
H0:b <> 0

a * c ÷ (b * c) = a ÷ b
apply Z.quot_mul_cancel_r; auto. Qed.

forall a b c : Z, c <> 0 -> c * a ÷ (c * b) = a ÷ b

forall a b c : Z, c <> 0 -> c * a ÷ (c * b) = a ÷ b
a, b, c:Z
H:c <> 0

c * a ÷ (c * b) = a ÷ b
a, b, c:Z
H:c <> 0

c * a ÷ (b * c) = a ÷ b
a, b, c:Z
H:c <> 0
H0:b <> 0

c * a ÷ (b * c) = a ÷ b
a, b, c:Z
H:c <> 0
H0:b <> 0

c * a ÷ (c * b) = a ÷ b
apply Z.quot_mul_cancel_l; auto. Qed.

forall a b c : Z, Z.rem (c * a) (c * b) = c * Z.rem a b

forall a b c : Z, Z.rem (c * a) (c * b) = c * Z.rem a b
a, b, c:Z

Z.rem (c * a) (c * b) = c * Z.rem a b
a, b, c:Z
H:c <> 0

Z.rem (c * a) (c * b) = c * Z.rem a b
a, b, c:Z
H:c <> 0

Z.rem (c * a) (b * c) = c * Z.rem a b
a, b, c:Z
H:c <> 0
H0:b <> 0

Z.rem (c * a) (b * c) = c * Z.rem a b
a, b, c:Z
H:c <> 0
H0:b <> 0

Z.rem (c * a) (c * b) = c * Z.rem a b
apply Z.mul_rem_distr_l; auto. Qed.

forall a b c : Z, Z.rem (a * c) (b * c) = Z.rem a b * c

forall a b c : Z, Z.rem (a * c) (b * c) = Z.rem a b * c
a, b, c:Z

Z.rem (a * c) (b * c) = Z.rem a b * c
a, b, c:Z
H:b <> 0

Z.rem (a * c) (b * c) = Z.rem a b * c
a, b, c:Z
H:b <> 0

Z.rem (a * c) (c * b) = Z.rem a b * c
a, b, c:Z
H:b <> 0
H0:c <> 0

Z.rem (a * c) (c * b) = Z.rem a b * c
a, b, c:Z
H:b <> 0
H0:c <> 0

Z.rem (a * c) (b * c) = Z.rem a b * c
apply Z.mul_rem_distr_r; auto. Qed.
Operations modulo.

forall a n : Z, Z.rem (Z.rem a n) n = Z.rem a n

forall a n : Z, Z.rem (Z.rem a n) n = Z.rem a n
a, n:Z

Z.rem (Z.rem a n) n = Z.rem a n
a, n:Z
H:n <> 0

Z.rem (Z.rem a n) n = Z.rem a n
apply Z.rem_rem; auto. Qed.

forall a b n : Z, Z.rem (a * b) n = Z.rem (Z.rem a n * Z.rem b n) n

forall a b n : Z, Z.rem (a * b) n = Z.rem (Z.rem a n * Z.rem b n) n
a, b, n:Z

Z.rem (a * b) n = Z.rem (Z.rem a n * Z.rem b n) n
a, b, n:Z
H:n <> 0

Z.rem (a * b) n = Z.rem (Z.rem a n * Z.rem b n) n
apply Z.mul_rem; auto. Qed.
addition and modulo
Generally speaking, unlike with Zdiv, we don't have (a+b) rem n = (a rem n + b rem n) rem n for any a and b. For instance, take (8 + (-10)) rem 3 = -2 whereas (8 rem 3 + (-10 rem 3)) rem 3 = 1.

forall a b n : Z, 0 <= a * b -> Z.rem (a + b) n = Z.rem (Z.rem a n + Z.rem b n) n

forall a b n : Z, 0 <= a * b -> Z.rem (a + b) n = Z.rem (Z.rem a n + Z.rem b n) n
a, b, n:Z
H:0 <= a * b

Z.rem (a + b) n = Z.rem (Z.rem a n + Z.rem b n) n
a, b, n:Z
H:0 <= a * b
H0:n <> 0

Z.rem (a + b) n = Z.rem (Z.rem a n + Z.rem b n) n
apply Z.add_rem; auto. Qed.

forall a b n : Z, 0 <= a * b -> Z.rem (Z.rem a n + b) n = Z.rem (a + b) n

forall a b n : Z, 0 <= a * b -> Z.rem (Z.rem a n + b) n = Z.rem (a + b) n
a, b, n:Z
H:0 <= a * b

Z.rem (Z.rem a n + b) n = Z.rem (a + b) n
a, b, n:Z
H:0 <= a * b
H0:n <> 0

Z.rem (Z.rem a n + b) n = Z.rem (a + b) n
apply Z.add_rem_idemp_l; auto. Qed.

forall a b n : Z, 0 <= a * b -> Z.rem (b + Z.rem a n) n = Z.rem (b + a) n

forall a b n : Z, 0 <= a * b -> Z.rem (b + Z.rem a n) n = Z.rem (b + a) n
a, b, n:Z
H:0 <= a * b

Z.rem (b + Z.rem a n) n = Z.rem (b + a) n
a, b, n:Z
H:0 <= a * b
H0:n <> 0

Z.rem (b + Z.rem a n) n = Z.rem (b + a) n
a, b, n:Z
H:0 <= a * b
H0:n <> 0

0 <= b * a
rewrite Z.mul_comm; auto. Qed.

forall a b n : Z, Z.rem (Z.rem a n * b) n = Z.rem (a * b) n

forall a b n : Z, Z.rem (Z.rem a n * b) n = Z.rem (a * b) n
a, b, n:Z

Z.rem (Z.rem a n * b) n = Z.rem (a * b) n
a, b, n:Z
H:n <> 0

Z.rem (Z.rem a n * b) n = Z.rem (a * b) n
apply Z.mul_rem_idemp_l; auto. Qed.

forall a b n : Z, Z.rem (b * Z.rem a n) n = Z.rem (b * a) n

forall a b n : Z, Z.rem (b * Z.rem a n) n = Z.rem (b * a) n
a, b, n:Z

Z.rem (b * Z.rem a n) n = Z.rem (b * a) n
a, b, n:Z
H:n <> 0

Z.rem (b * Z.rem a n) n = Z.rem (b * a) n
apply Z.mul_rem_idemp_r; auto. Qed.
Unlike with Zdiv, the following result is true without restrictions.

forall a b c : Z, a ÷ b ÷ c = a ÷ (b * c)

forall a b c : Z, a ÷ b ÷ c = a ÷ (b * c)
a, b, c:Z

a ÷ b ÷ c = a ÷ (b * c)
a, b, c:Z
H:b <> 0

a ÷ b ÷ c = a ÷ (b * c)
a, b, c:Z
H:b <> 0

a ÷ b ÷ c = a ÷ (c * b)
a, b, c:Z
H:b <> 0
H0:c <> 0

a ÷ b ÷ c = a ÷ (c * b)
a, b, c:Z
H:b <> 0
H0:c <> 0

a ÷ b ÷ c = a ÷ (b * c)
apply Z.quot_quot; auto. Qed.
A last inequality:

forall a b c : Z, 0 <= a -> 0 <= b -> 0 <= c -> c * (a ÷ b) <= c * a ÷ b

forall a b c : Z, 0 <= a -> 0 <= b -> 0 <= c -> c * (a ÷ b) <= c * a ÷ b
a, b, c:Z
H:0 <= a
H0:0 <= b
H1:0 <= c

c * (a ÷ b) <= c * a ÷ b
a, b, c:Z
H:0 <= a
H0:0 <= b
H1:0 <= c
H2:b <> 0

c * (a ÷ b) <= c * a ÷ b
apply Z.quot_mul_le; auto with zarith. Qed.
Z.rem is related to divisibility (see more in Znumtheory)

forall a b : Z, Z.rem a b = 0 <-> (exists c : Z, a = b * c)

forall a b : Z, Z.rem a b = 0 <-> (exists c : Z, a = b * c)
a, b:Z

Z.rem a b = 0 <-> (exists c : Z, a = b * c)
a:Z

a = 0 <-> (exists c : Z, a = 0 * c)
a, b:Z
H:b <> 0
Z.rem a b = 0 <-> (exists c : Z, a = b * c)
a, b:Z
H:b <> 0

Z.rem a b = 0 <-> (exists c : Z, a = b * c)
a, b:Z
H:b <> 0

(b | a) <-> (exists c : Z, a = b * c)
split; intros (c,Hc); exists c; subst; auto with zarith. Qed.
Particular case : dividing by 2 is related with parity

forall a : Z, Remainder a 2 (if Z.odd a then Z.sgn a else 0)

forall a : Z, Remainder a 2 (if Z.odd a then Z.sgn a else 0)

Remainder 0 2 (if Z.odd 0 then Z.sgn 0 else 0)
p:positive
Remainder (Z.pos p) 2 (if Z.odd (Z.pos p) then Z.sgn (Z.pos p) else 0)
p:positive
Remainder (Z.neg p) 2 (if Z.odd (Z.neg p) then Z.sgn (Z.neg p) else 0)

Remainder 0 2 0
p:positive
Remainder (Z.pos p) 2 (if Z.odd (Z.pos p) then Z.sgn (Z.pos p) else 0)
p:positive
Remainder (Z.neg p) 2 (if Z.odd (Z.neg p) then Z.sgn (Z.neg p) else 0)

0 <= 0 /\ 0 <= 0 < Z.abs 2
p:positive
Remainder (Z.pos p) 2 (if Z.odd (Z.pos p) then Z.sgn (Z.pos p) else 0)
p:positive
Remainder (Z.neg p) 2 (if Z.odd (Z.neg p) then Z.sgn (Z.neg p) else 0)

0 <= 0 /\ 0 <= 0 < 2
p:positive
Remainder (Z.pos p) 2 (if Z.odd (Z.pos p) then Z.sgn (Z.pos p) else 0)
p:positive
Remainder (Z.neg p) 2 (if Z.odd (Z.neg p) then Z.sgn (Z.neg p) else 0)
p:positive

Remainder (Z.pos p) 2 (if Z.odd (Z.pos p) then Z.sgn (Z.pos p) else 0)
p:positive
Remainder (Z.neg p) 2 (if Z.odd (Z.neg p) then Z.sgn (Z.neg p) else 0)
p:positive

0 <= Z.pos p /\ 0 <= (if Z.odd (Z.pos p) then Z.sgn (Z.pos p) else 0) < Z.abs 2
p:positive
Remainder (Z.neg p) 2 (if Z.odd (Z.neg p) then Z.sgn (Z.neg p) else 0)
p:positive

Remainder (Z.neg p) 2 (if Z.odd (Z.neg p) then Z.sgn (Z.neg p) else 0)
p:positive

Z.neg p <= 0 /\ - Z.abs 2 < (if Z.odd (Z.neg p) then Z.sgn (Z.neg p) else 0) <= 0
destruct p; simpl; split; now auto with zarith. Qed.

forall a : Z, Z.rem a 2 = (if Z.odd a then Z.sgn a else 0)

forall a : Z, Z.rem a 2 = (if Z.odd a then Z.sgn a else 0)
a:Z

Z.rem a 2 = (if Z.odd a then Z.sgn a else 0)
a:Z

(if Z.odd a then Z.sgn a else 0) = Z.rem a 2
a:Z

Remainder a 2 (if Z.odd a then Z.sgn a else 0)
a:Z
a = 2 * Z.quot2 a + (if Z.odd a then Z.sgn a else 0)
a:Z

a = 2 * Z.quot2 a + (if Z.odd a then Z.sgn a else 0)
apply Zquot2_odd_eqn. Qed.

forall a : Z, Z.rem a 2 = (if Z.even a then 0 else Z.sgn a)

forall a : Z, Z.rem a 2 = (if Z.even a then 0 else Z.sgn a)
a:Z

Z.rem a 2 = (if Z.even a then 0 else Z.sgn a)
a:Z

(if negb (Z.even a) then Z.sgn a else 0) = (if Z.even a then 0 else Z.sgn a)
now destruct Z.even. Qed.

forall a : Z, Z.even a = (Z.rem a 2 =? 0)

forall a : Z, Z.even a = (Z.rem a 2 =? 0)
a:Z

Z.even a = (Z.rem a 2 =? 0)
a:Z

Z.even a = ((if Z.even a then 0 else Z.sgn a) =? 0)
destruct a as [ |p|p]; trivial; now destruct p. Qed.

forall a : Z, Z.odd a = negb (Z.rem a 2 =? 0)

forall a : Z, Z.odd a = negb (Z.rem a 2 =? 0)
a:Z

Z.odd a = negb (Z.rem a 2 =? 0)
a:Z

Z.odd a = negb ((if Z.odd a then Z.sgn a else 0) =? 0)
destruct a as [ |p|p]; trivial; now destruct p. Qed.

Interaction with "historic" Zdiv

They agree at least on positive numbers:

forall a b : Z, 0 <= a -> 0 < b -> a ÷ b = a / b /\ Z.rem a b = a mod b

forall a b : Z, 0 <= a -> 0 < b -> a ÷ b = a / b /\ Z.rem a b = a mod b
a, b:Z
H:0 <= a
H0:0 < b

a ÷ b = a / b /\ Z.rem a b = a mod b
a, b:Z
H:0 <= a
H0:0 < b

0 <= Z.rem a b < Z.abs b
a, b:Z
H:0 <= a
H0:0 < b
0 <= a mod b < Z.abs b
a, b:Z
H:0 <= a
H0:0 < b
b * (a ÷ b) + Z.rem a b = b * (a / b) + a mod b
a, b:Z
H:0 <= a
H0:0 < b

0 <= a mod b < Z.abs b
a, b:Z
H:0 <= a
H0:0 < b
b * (a ÷ b) + Z.rem a b = b * (a / b) + a mod b
a, b:Z
H:0 <= a
H0:0 < b

b * (a ÷ b) + Z.rem a b = b * (a / b) + a mod b
a, b:Z
H:0 <= a
H0:0 < b

b * (a ÷ b) + Z.rem a b = a
symmetry; apply Z.quot_rem; auto with *. Qed.

forall a b : Z, 0 <= a -> 0 <= b -> a ÷ b = a / b

forall a b : Z, 0 <= a -> 0 <= b -> a ÷ b = a / b
a, b:Z
Ha:0 <= a
Hb:0 <= b

a ÷ b = a / b
a, b:Z
Ha:0 <= a
Hb:0 < b

a ÷ b = a / b
a, b:Z
Ha:0 <= a
Hb:0 = b
a ÷ b = a / b
a, b:Z
Ha:0 <= a
Hb:0 < b

a ÷ b = a / b
generalize (Zquotrem_Zdiv_eucl_pos a b Ha Hb); intuition.
a, b:Z
Ha:0 <= a
Hb:0 = b

a ÷ b = a / b
subst; now rewrite Zquot_0_r, Zdiv_0_r. Qed.

forall a b : Z, 0 <= a -> 0 < b -> Z.rem a b = a mod b

forall a b : Z, 0 <= a -> 0 < b -> Z.rem a b = a mod b
intros a b Ha Hb; generalize (Zquotrem_Zdiv_eucl_pos a b Ha Hb); intuition. Qed.
Modulos are null at the same places

forall a b : Z, b <> 0 -> Z.rem a b = 0 <-> a mod b = 0

forall a b : Z, b <> 0 -> Z.rem a b = 0 <-> a mod b = 0
a, b:Z
H:b <> 0

Z.rem a b = 0 <-> a mod b = 0
rewrite Zrem_divides, Zmod_divides; intuition. Qed.