Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.

n : nat, 2 * sum n = n * (n + 1)

n : nat, 2 * sum n = n * (n + 1)

2 * sum 0 = 0 * (0 + 1)
n:nat
IHn:2 * sum n = n * (n + 1)
2 * sum (S n) = S n * (S n + 1)

2 * sum 0 = 0 * (0 + 1)
reflexivity.
n:nat
IHn:2 * sum n = n * (n + 1)

2 * sum (S n) = S n * (S n + 1)
n:nat
IHn:2 * sum n = n * (n + 1)

2 * (S n + sum n) = S n * (S n + 1)
n:nat
IHn:2 * sum n = n * (n + 1)

2 * S n + 2 * sum n = S n * (S n + 1)
n:nat
IHn:2 * sum n = n * (n + 1)

2 * S n + n * (n + 1) = S n * (S n + 1)
n:nat
IHn:2 * sum n = n * (n + 1)

2 * (1 + n) + n * (n + 1) = (1 + n) * (1 + n + 1)
n:nat
IHn:2 * sum n = n * (n + 1)

2 * 1 + 2 * n + (n * n + n * 1) = (1 + n) * 1 + (1 + n) * n + (1 + n) * 1
n:nat
IHn:2 * sum n = n * (n + 1)

2 * 1 + 2 * n + (n * n + n * 1) = 1 * 1 + n * 1 + (1 * n + n * n) + (1 * 1 + n * 1)
n:nat
IHn:2 * sum n = n * (n + 1)

1 + 1 + (n + n) + (n * n + n) = 1 + n + (n + n * n) + (1 + n)
n:nat
IHn:2 * sum n = n * (n + 1)

1 + 1 + n + n + n * n + n = 1 + n + n + n * n + 1 + n
n:nat
IHn:2 * sum n = n * (n + 1)

2 + n + n + n * n + n = 1 + n + n + n * n + 1 + n
n:nat
IHn:2 * sum n = n * (n + 1)

2 + n + n + n * n + n = 1 + (1 + n + n + n * n) + n
n:nat
IHn:2 * sum n = n * (n + 1)

2 + n + n + n * n + n = 1 + 1 + n + n + n * n + n
n:nat
IHn:2 * sum n = n * (n + 1)

2 + n + n + n * n + n = 2 + n + n + n * n + n
reflexivity. Qed.