\ccForall{n : \ccNat{}}{2 \times \ccNsum{i}{n}{i} = n \times (n + 1)}2 \times 0 = 0 \times (0 + 1)n:\ccNat{}IHn:2 \times \ccNsum{i}{n}{i} = n \times (n + 1)2 \times (\ccSucc{ n} + \ccNsum{i}{n}{i}) = \ccSucc{ n} \times (\ccSucc{ n} + 1)reflexivity.2 \times 0 = 0 \times (0 + 1)n:\ccNat{}IHn:2 \times \ccNsum{i}{n}{i} = n \times (n + 1)2 \times (\ccSucc{ n} + \ccNsum{i}{n}{i}) = \ccSucc{ n} \times (\ccSucc{ n} + 1)n:\ccNat{}IHn:2 \times \ccNsum{i}{n}{i} = n \times (n + 1)2 \times \ccSucc{ n} + 2 \times \ccNsum{i}{n}{i} = \ccSucc{ n} \times (\ccSucc{ n} + 1)ring. Qed.n:\ccNat{}IHn:2 \times \ccNsum{i}{n}{i} = n \times (n + 1)2 \times \ccSucc{ n} + n \times (n + 1) = \ccSucc{ n} \times (\ccSucc{ n} + 1)