Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
\(\newcommand{\ccQ}{\mathbb{Q}}\) \(\newcommand{\ccNat}{\mathbb{N}}\) \(\newcommand{\ccSucc}[1]{\mathrm{S}\:#1}\) \(\newcommand{\ccFrac}[2]{\frac{#1}{#2}}\) \(\newcommand{\ccPow}[2]{{#1}^{#2}}\) \(\newcommand{\ccNot}[1]{{\lnot #1}}\) \(\newcommand{\ccEvar}[1]{\textit{\texttt{#1}}}\) \(\newcommand{\ccForall}[2]{\forall \: #1. \; #2}\) \(\newcommand{\ccNsum}[3]{\sum_{#1 = 0}^{#2} #3}\)

\ccForall{n : \ccNat{}}{2 \times \ccNsum{i}{n}{i} = n \times (n + 1)}

2 \times 0 = 0 \times (0 + 1)
n:\ccNat{}
IHn:2 \times \ccNsum{i}{n}{i} = n \times (n + 1)
2 \times (\ccSucc{ n} + \ccNsum{i}{n}{i}) = \ccSucc{ n} \times (\ccSucc{ n} + 1)

2 \times 0 = 0 \times (0 + 1)
reflexivity.
n:\ccNat{}
IHn:2 \times \ccNsum{i}{n}{i} = n \times (n + 1)

2 \times (\ccSucc{ n} + \ccNsum{i}{n}{i}) = \ccSucc{ n} \times (\ccSucc{ n} + 1)
n:\ccNat{}
IHn:2 \times \ccNsum{i}{n}{i} = n \times (n + 1)

2 \times \ccSucc{ n} + 2 \times \ccNsum{i}{n}{i} = \ccSucc{ n} \times (\ccSucc{ n} + 1)
n:\ccNat{}
IHn:2 \times \ccNsum{i}{n}{i} = n \times (n + 1)

2 \times \ccSucc{ n} + n \times (n + 1) = \ccSucc{ n} \times (\ccSucc{ n} + 1)
ring. Qed.